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Abstract 

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. 

Computational visual saliency detection model provides important information for semantic understanding in many real world 

applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended 

regions for both interesting objects and dominant motions in video sequences. Based on the visual orientation inhomogeneity 

of human perception, a novel spatial saliency detection technique called visual orientation inhomogeneous saliency model is 

proposed. In temporal saliency detection, a novel optical flow model is created based on the dynamic consistency of motion. 

We fused the spatial and the temporal saliency maps together to build the spatio-temporal attention analysis model toward a 

uniform framework. The proposed model is evaluated on three typical video datasets with six visual saliency detection 

algorithms and achieves remarkable performance. Empirical validations demonstrate the salient regions detected by the 

proposed model highlight the dominant and interesting objects effectively and efficiently. More importantly, the saliency 

regions detected by the proposed model are consistent with human subjective eye tracking data. 

Keywords: Perception-oriented video saliency; spatio-temporal modeling; orientation inhomogeneous feature map; dynamic consistency; 

visual attention. 

1. Introduction 

    Visual perception is an active process to interpret the surrounding environment by processing information 

contained in visual light [1]. Theories and observations of visual perception have been the main source of 

inspiration for computer vision and artificial intelligence. Perceptual models play an increasingly significant role 

in optimizations of various applications, such as perceptual-based video coding [2], quality assessment [3], real-

time user authentication [4], sound classification [5], and audio watermarking [6]. 

Visual attention analysis plays an important role in perception-oriented modeling and attracts interest from a 
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broad range of researchers and scientists. First, attention is the behavioral and cognitive process of selectively 

concentrating on one aspect of the environment while ignoring other things [7]. In human, attention is facilitated 

by a retina that has evolved a high-resolution central fovea and a low-resolution periphery [8], which is also 

closely related to multiple other cognitive processes, such as: perception, memory, and learning. Hence, the 

research on visual attention analysis provides a window on the human perception and other cognitive processes. 

Second, based on the eye tracking data recorded by the high-speed eye tracker, attention is more easily to be 

observed than other cognitive processes. Third, the research on attention analysis provides an effective means to 

connect human perception and the various applications in further processing [9], including image quality 

assessment [10], object detection [11], action recognition [12], image retargeting [13], video abstraction [14], 

removing label ambiguity in image [15], etc. 

The strongest attractors of attention are stimuli that pop-out from their neighbors in space or time usually 

referred to as “saliency” [16]. Visual attention analysis simulates the human visual system behavior by 

automatically producing saliency maps of the target image or video sequence [17]. The saliency map is proposed 

to measure the conspicuity and calculate the likelihood of a location in visual data to attract attention [18]. 

Therefore, the visual saliency detection provides predictions on which regions are likely to attract observers’ 

attention [19]. Although image saliency detection has been long studied, little work has been extended to video 

sequences due to the data complexity. After the standard real world video datasets with subjects’ eye tracking 

data emerge, such as the video action dataset [20], a more detailed and quantitative research for video saliency 

detection and analysis will be feasible.  

The conference version of our preliminary work was published in [21]. This work demonstrates good 

performance on saliency detection based on dynamic consistency of motion. But in spatial saliency modelling, it 

inherits the classical bottom-up spatial saliency map. In this paper, we propose a novel perception-oriented video 

saliency detection method called spatio-temporal attention analysis model (STAM) by referring to the characters 

of the human visual system. The STAM follows the three-part scheme of video saliency detection, including 

spatial saliency detection, temporal saliency detection, and the fusion of spatial and temporal saliency maps. In 

feature extraction stage of spatial saliency detection, multiple low-level visual features including: intensity, color, 

orientation, and contrast are extracted at multiple scales. Instead of using the original orientation feature map, we 

propose a novel technique called visual orientation inhomogeneous saliency model (VOIS). In our orientation 

feature map, the information in cardinal orientations is retained, but the information in oblique orientations is 

weakened with the inhomogenous weight. Then, the activation maps are built based on multiple low-level feature 

maps. And the saliency map is finally constructed by a normalized combination of the activation map. In 

temporal saliency map modeling part, a novel dynamic consistent optical flow model (DCOF) is proposed based 

on the human visual dynamic continuity. Different from the classical optical flow model which estimates motion 

between each adjacent frame pair independently, the proposed DCOF takes account of the motion consistency in 

video sequence. In saliency fusion stage, the “skew-max” fusion method is utilized to fuse the spatial and 

temporal saliency maps together and construct the final video saliency map.  

In the following parts of this paper, we discuss the related work on video saliency detection in Section 2. A 

novel spatio-temporal video saliency detection technique is introduced in Section 3. In Section 4, we demonstrate 

the performance of the proposed video saliency detection model on three video sequence datasets. The paper is 

closed with conclusion and future work in Section 5. 

2. Related work on Saliency detection 

Video saliency detection calculates the salient degree of each location by comparing with its neighbors both in 

spatial and in temporal areas. Previously, most existing computational saliency models depend on the intrinsic 

bottom-up spatial features of the visual stimuli by referring to the human visual system [22] [23]. 

Neurophysiological experiments have proved that neurons in the middle temporal visual area (MT) compute local 
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motion contrast. Such neurons, which underlie the perception of motion pop-out and figure-ground segmentation, 

influence the attention allocation [24]. After realizing the importance of motion information in video attention, 

the motion feature has been added into the saliency models [25][26]. Recently, to simulate two pathways 

(parvocellular and magnocellular) of the human visual system, the video saliency detection procedure is divided 

into spatial and temporal pathways [27]. These two pathways (the P and M pathways) correspond to the static and 

dynamic information of video. In P pathway, parvocellular cell has greater spatial resolution, but lower temporal 

resolution. Conversely, in M pathway, magnocellular cell has greater temporal resolution, but lower spatial 

resolution.  

Typically, in spatial pathway saliency detection, most of the video saliency techniques follow the classical 

image saliency architecture including three stages: feature extraction, activation, and normalization. Multiple 

low-level visual features such as intensity, color, orientation, and contrast are firstly extracted at multiple scales. 

Then, the activation maps are built based on multiple low-level feature maps. After the activation maps are 

computed, they are normalized and combined into a spatial saliency map that represents the saliency of each pixel 

[28]. Almost all of the existing bottom-up models are inspired by the theories from human visual system [29]. 

Among them, the most famous one was proposed by Itti et al. [30]. They developed the center surround structure 

akin to on-type and off-type visual receptive field. We denote this model as ITTI in our experiment. In recent 

years, more proposed work simulated the multi-scale and multi-orientation function of primary visual cortex. 

Achanta et al. detected the saliency map with a Difference of Gaussians (DOG) model to describe the spatial 

properties of visual regions [31]. Gabor filters and Log-Gabor wavelets were utilized to explore the salient 

features such as spatial localization, spatial frequency characteristics in [32] and [29], respectively. 

In temporal pathway saliency detection, optical flow is the most widely used method in existing video saliency 

detection models [20] [31] [33]. These models rely on the classical optical flow method to extract the motion 

vector between each frame pair independently as the temporal saliency map. The classical formulation of optical 

flow was first introduced by Horn and Schunck [34]. They optimized a functional based on residuals from the 

brightness constancy constraint, and a regularization term expressing the smoothness assumption of the flow field. 

Black and Anandan further addressed the outlier sensitivity problem of initial optical flow model by replacing the 

quadratic error function with a robust formulation [35]. Although different efforts have been put into improving 

the optical flow, the median filtering is the most important source to improve the performance of the classical 

optical flow model [36]. According to the extensive test by [37], the median filtering makes non-robust methods 

more robust and improves the accuracy of the optical flow models. Unfortunately, although the optical flow 

techniques can accurately detect the motion in the direction of intensity gradient, the temporal saliency is not 

perfectly equal to the amplitude of all the motion between each adjacent frame pair. Indeed, only the continuous 

motion of the prominent object should be popped out as the indicator of the temporal salient region. 

3. Spatio-temporal attention model 

In this section, we propose a novel spatio-temporal attention analysis model (STAM). The schematic 

illustration of the proposed STAM is described in Fig. 1. 
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Fig.  1. Schematic illustration of spatio-temporal attention analysis model (STAM). 

 

The whole spatio-temporal attention analysis model can be partitioned into two pathways. In spatial saliency 

map construction, we follow the three common stages of the classical bottom-up spatial saliency map. A novel 

spatial saliency map technique called visual orientation inhomogeneous saliency model (VOIS) is proposed in 

Section 3.1. In VOIS, we will provide a human-like orientation feature map extraction based on the visual 

orientation inhomogeneity of human perception. In temporal saliency map construction, a novel dynamic 

consistent optical flow model (DCOF) is proposed in Section 3.2 based on the human visual dynamic continuity. 

Different from the classical optical flow model estimates motion between each adjacent frame pair independently, 

DCOF both underlines the consistency of motion saliency in the current frame and between the consecutive 

frames.  In Section 3.3, we simply adopt the “skew-max” fusion method from existing work to obtain the final 

video saliency map. 

3.1. Spatial saliency map construction 

The leading models of spatial saliency map construction can be divided into three stages: 

1) Extraction: multiple low-level visual features (intensity, color, orientation, and contrast) are extracted at 

multiple scales; 

2)    Activation: the activation maps are built based on multiple low-level feature maps; 

3)    Normalization: the saliency map is constructed by a normalized combination of the activation map.  

 In this part, we propose a novel spatial saliency detection technique called visual orientation inhomogeneous 

saliency model (VOIS) under this three-stage learning procedure. Specifically, based on the visual orientation 

inhomogeneity, in the first stage, we try to provide a human-like orientation feature map extraction to substitute 

the original orientation feature map.  
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 In the first stage, the bottom-up features are extracted based on several feature channels. Among these feature 

channels, the orientation information is known to play an important role in early visual system. Based on the 

discovery of Hubel and Wiesel, a key characteristic of the responses of primary visual area (V1) neurons is their 

high selectivity for stimulus orientation [38]. Most early visual neurons tuned to some type of local spatial 

contrast (such as center-surround or orientated edges) [39]. The examinations of the early visual system of 

mammals have shown Gabor-like behavior of the simple cell responses [40]. The orientation information is 

thought to be a basic component of an object [41]. Girshick et al. [42] found the human observation exploits 

perception inhomogeneities in orientation. It means the human observation is worst at oblique angles and best at 

cardinal (horizontal and vertical) angles. From the physiological instantiation, they found that the non-

uniformities in the representation of orientation in the V1 population contribute to non-uniformities in perceptual 

discriminability. Specifically, a variety of measurements have shown that cardinal orientation is represented by a 

disproportionately large fraction of V1 neurons, and that those neurons also tend to have narrower tuning curves 

[43].  Based on these proofs from neuroscience, Brecht et al. [44] kept the cardinal orientation feature map to 

implement a neural network for human visual search mechanism simulation. In Fig. 2, an example of orientation 

feature map extraction in cardinal and oblique orientations in multiple scales is demonstrated. 

 In the proposed spatial saliency map construction, unlike the existing standard orientation feature maps, the 

novel orientation feature map extracts the non-uniformly information from different visual orientation as Eq. (1):  

                                                    o
c oF F F                                                               (1) 

where oF  is the proposed feature map in orientation channel. cF  is the feature map extracted in cardinal 

orientations, and oF  is the feature map extracted in oblique orientations. The information in cardinal orientations 

is retained, but the information in oblique orientations is weakened with the inhomogenous weight parameter 

 ( 0 1  ). If 1  , it is the original orientation map whose the cardinal and oblique orientations are treated 

equally. If 0  , it is a special version of orientation feature maps that just includes cardinal orientations. As we 
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Fig. 2. Example of orientation feature map extraction in cardinal and oblique orientations in multiple scales. 
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known, one of the underlying reasons for the anisotropy of orientation discriminability is the prevalence of 

vertical and horizontal orientations in the real-world [42]. By utilizing Principal Component Analysis (PCA) to 

obtain the principal components for energy spectra of real-world scenes, Oliva and Torralba found that vertical 

and horizontal orientations are more frequent than obliques [45]. They obtained more precise anisotropy in image 

category by fitting the distribution of orientations to the power spectrum [46]. Zhong et al. validated that visual 

orientation inhomogeneity descriptor can achieve better or at least comparable performance with less 

computation resource and time in various computer vision tasks under real world conditions, such as image 

matching and object recognition [47]. Similar with these existing researches, the statistical analysis of the 

orientation distribution can be used to infer the inhomogenous weight in oblique orientation of the orientation 

feature map extraction. Therefore, in this paper, the inhomogenous weight   is obtained by referring to the 

orientation distribution in environment. 

 To obtain the inhomogenous weight, we statistically analyze the orientation distribution in environment on the 

standard dataset Urban and Natural Scene dataset [45]. This dataset includes 2,688 authentic images with eight 

semantically organized categories, namely “coast,” “forest,” “highway,” “city center,” “mountain,” “open 

country,” “street,” and “tall building.” Here, we define the environmental orientation distribution as the 

probability distribution over local orientations with different spatial scale. The Canny edge detector [48] is 

applied to form the edge map of every authentic image in Urban and Natural Scene dataset. The threshold of the 

Canny detector is set according to the default setting of Matlab edge detection techniques. The local image 

gradients are computed based on the edge map. The orientation histograms are statistically calculated based on 

the gradient orientation values. In Table 1, we compare the orientation magnitude proportion of cardinal 

orientations with oblique orientations in eight different categories of the Urban and Natural Scene dataset. The 

statistical significance of the difference between the cardinal orientations vs. oblique orientations is tested on 

paired t tests. According to the results of t test, the difference between them is significant. We also tried Garbor 

filter as the tool to calculate the orientation magnitude proportion. We find these results are similar.   

    The inhomogenous weight   is simply defined as Eq. (2): 

                                                 o

c

P

P
                                                                              (2) 

where oP  is the average value of the cardinal orientations magnitude proportion. cP  is the average value of the 

oblique orientations magnitude proportion.  

Table 1. Magnitude proportion of cardinal vs. oblique orientation 

Category Orientation Mean±Sem P Value 

 

Category Orientation Mean±Sem P Value 

Coast 
Cardinal 0.6999±0.00406 

<0.0001 Mountain 
Cardinal 0.5436±0.00228 

<0.0001 
Oblique 0.3001±0.00406 Oblique 0.4564±0.00228 

Forest 
Cardinal 0.5399±0.00407 

<0.0001 Open country 
Cardinal 0.5718±0.00280 

<0.0001 
Oblique 0.4601±0.00407 Oblique 0.4282±0.00280 

Highway 
Cardinal 0.6564±0.00532 

<0.0001 Street 
Cardinal 0.6255±0.00335 

<0.0001 
Oblique 0.3436±0.00532 Oblique 0.3745±0.00335 

City center 
Cardinal 0.7539±0.00487 

<0.0001 Tall building 
Cardinal 0.7027±0.00505 

<0.0001 
Oblique 0.2461±0.00487 Oblique 0.2973±0.00505 

 

 To the activation and normalization stage, we follow the technique of graph-based saliency (GBVS) [32] to 

construct the spatial saliency map. Similar with GBVS, in our method, the fully-connected directed graph GA is 

constructed in activation stage. The weight of the directed edge in GA from node ( , )i j  to node ( , )p q  is assigned 

as Eq. (3): 
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                                          (( , ),( , )) (( , ) || ( , )) ( , )Aw i j p q d i j p q G i p j q                                                  (3) 

                                                

2 2

2

( , )
(( , ) || ( , )) log , ( , ) exp( )

( , ) 2 G

F i j a b
d i j p q G a b

F p q 


  

                                      
(4) 

where d((i, j) || (p,q))  is utilized to measure the dissimilarity between some region around ( , )i j  and ( , )p q  in 

the specified feature map F . G  is a free parameter of the algorithm.  

 In normalization stage of our method, the fully-connected directed graph GN is built. The weight of the directed 

edge in GN from each node ( , )i j  to node ( , )p q  is assigned as Eq. (5), where A  is the activation map. 

                                          (( , ),( , )) ( , ) ( , )   Nw i j p q A p q G i p j q                                                     (5) 

Then, we follow the technique of graph-based saliency. The spatial saliency map SSMap is formed based on 

the fully-connected directed graph AG  and NG . 

3.2. Temporal saliency map construction 

As we described before, in the existing video saliency detection models, optical flow technique is the most 

widely used temporal saliency detection approach [20] [31] [33]. The optical flow is defined as the pattern of 

apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an 

observer and the scene [49]. It was first studied in the 1940s and ultimately published by psychologist [50]. The 

optical flow approach approximates the object motion by estimating vectors originating or terminating at pixels 

in image sequences, so it represents the velocity field that warps one image into another feature space [51]. The 

motion detection methods based on optical flow technique can accurately detect the motion in the direction of 

intensity gradient. 

The objective function of the classical optical flow is defined as: 

                    
1 2 , ,

,

1 , 1, , , 1 , 1, , , 1

( , ) { ( ( , ) ( , ))

              [ ( ) ( )  ( ) ( )]}

u v D i j i j

i j

S i j i j S i j i j S i j i j S i j i j

E f I i j I i u j v

f u u f u u f v v f v v    

   

       


                   (6) 

where u  and v  are the horizontal and vertical components of the optical flow field to be estimated from image I1 

and I2. 1  is a regularization parameter. fD is the brightness constancy penalty function, and fS 
is the smooth 

penalty function. Here, we refer to the formulation in Eq. (6) and all the formulations that are directly derived 

from it as the “classical optical flow model”. 

Most of the existing temporal saliency detection techniques rely on the classical optical flow method to extract 

the motion vector between each frame pair independently. Although the optical flow technique can detect motion 

accurately, the temporal saliency is not perfectly equal to the amplitude of all the motions between each adjacent 

frame pair. In fact, some subtle motions between frames are often resulted from the illumination change or other 

unsteady small-disturbance in environment. Therefore, in this case, the motion of the prominent object is possible 

to be drowned in optical flow vectors. Furthermore, the independent calculation in each frame pair has a high 

computational cost.  

To address the problem due to the direct use of the classical optical flow in temporal saliency detection, we 

propose a novel optimal function. Based on the dynamic continuity of neighbor locations in the same frame and 
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same locations between the neighbor frames, the objective function can be represented as Eq. (7):  

                  

, ,
, ,

,

1 , 1, , , 1 , 1, , , 1
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    

 
                (7)  

where Im is the mth frame in video sequence X , n is the number of neighbor frames with consistent motion. Here, 

û  and v̂  denote two components of the auxiliary flow field. 1 , 2  and 3  are the scalar regularization weights. 

The alternating optimization strategy is used to compute the objective function in Eq. (7). The first term of Eq. (7) 

emphasizes the dynamic continuity of same locations in temporal domain. The second term the dynamic 

continuity of neighbor locations in same frame. The third term encourages the auxiliary flow field û , v̂  and the 

flow field u , v  to be the same. The last term of the optimal function imposes a smoothness assumption within a 

region corresponding to the auxiliary flow field. The optimal function is constrained in a reasonable range by 

imposing the constraint based on the observation standard deviation ( , )o i j of human visual perception.  

Given by the eccentricity scaling parameter c, ( , )o i j  is calculated by Eq. (8) [52][53], where   is denoted as 

the number of pixels per degree of visual angle,   is the first-order coefficient which is equal to 0.42 [52].  

                                                    
2 2( , )   o i j cr c i j                                                               (8) 

  Finally, the temporal saliency map TSMap is formed based on optical flow filed map (u,v). The detailed 

procedure of the dynamic consistent saliency detection model (DCOF) is described in Algorithm 1. 

 

Algorithm 1: Dynamic Consistent Saliency Detection 

Input:     Video sequence data X ; 

Number of frames Nf  ;   m=1; n0=5; Pyramid level Np . 

Output: Temporal saliency map TSmap.  

1.         while m  < Nf  - n 

2.               p = 1; n = n0; 

3.               while p < Np + 1 do 

4.                  
, ,

ˆ ˆ( , , ) arg min  ( , , , )
u v

u v u v u v
n

n E ; 

5.                  * * 2 2
, ,

,

( , ) arg max( )i j i j
i j

i j u v  ; 

6.                   if * * * *

* *
2 2

, , 1

( , )

2




  o

i j i j p

i j
u v and n > 1 

7.                           n = max(n - 1,1); p = 1; 

8.                   else 

9.                           p = p + 1; 

10.                 end if 

11.            end while 

12.              2 2
, ,, normalize( )m i j i ji j u v TSmap ; 

13.             m = m + n; 

14.        end while 
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3.3. Spatio-Temporal  saliency Fusion 

In this stage, we fuse the spatial and temporal saliency maps together to get the final video saliency map. As 

we known, different fusion methods have been proposed and utilized, such as “mean” fusion, “max” fusion, 

“multiplicative” fusion, and “skew-max” fusion.  

The “mean” fusion takes the pixel average of the spatial and temporal saliency maps: 

                                           FSmap = (SSmap+TSmap)/2                                                             (9) 

The “max” fusion constructs each pixel as the maximum of the two saliency maps: 

                                           FSmap = max(SSmap,TSmap)                                                        (10) 

A pixel by pixel multiplication operation is the “multiplicative” fusion: 

                                            FSmap = SSmap×TSmap                                                               (11) 

    “Skew-max” fusion both takes advantage of the characteristics of the spatial and the temporal saliency maps: 

                                   FSmap =max(SSmap)×SSmap+skewness(TSmap)×TSmap + max(SSmap) 

                                                   ×skewness(TSmap)×SSmap ×TSmap                                                               (12) 

The “mean” fusion modulates one map with the other. If a pixel is salient for the temporal map but not for the 

spatial one, the fusion saliency result is lower than it in the spatial one. For the “max” fusion, a pixel has the 

highest saliency between the spatial and temporal maps and is less selective. The “multiplicative” fusion is the 

most selective one. In previous work, the saliency maps of “mean” and “max” fusions demonstrate close 

performance [54]. Marat et al. indicated that “skew-max” integration method [55] has best performance as the 

spatial-temporal integration function [27]. Hence, in this paper, we simply adopt the “skew-max” fusion method 

to take for the combination of two saliency maps as Eq. (12). 

4. Empirical validation 

To illustrate the effectiveness of our model, in this section, we conduct three experiments for video saliency 

detection task. In the first experiment, the proposed saliency detection model is tested on the Hollywood-2 natural 

dynamic human scene videos dataset [55]. In this dataset, we want to demonstrate the performance of the 

proposed saliency detection model and other saliency detection models for the object detection task. In the 

second experiment, three typical News videos collected from YouTube are utilized to test the efficiency of the 

proposed model. The third experiment is evaluated on the largest real world actions video dataset with human 

fixations [20]. In this dataset, the salient degree is measured in accordance with attention allocations of human 

based on the fixations of subjects. 

In spatial saliency detection, most of techniques include an independent stage to extract low-level visual 

features including orientation. Among these models, two classical bottom-up models are effective and accurate 

for detecting salient regions. Our model is compared with these two classical spatial models [30][32] to explore 

the effect of the orientation inhomogeneity. As we known, optical flow technique is the most widely used 

temporal saliency detection approach. And in temporal saliency detection, we proposed a novel optical flow 

model based on the dynamic consistency of motion. Thus, our comparison also includes two representative 
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optical flow models [34][35][37]. In model comparison, we also combined the spatial saliency map model [30] 

and [32] with these dynamic saliency detection models. Moreover, we compared with two state of the art visual 

saliency detection methods, self-resemblance [56] and signature saliency model [57]. 

For the functions and parameters in the proposed DCOF, we simply adopt the general setting of optical flow 

model in existing papers as follows. For example, Convex Charbonnier penalty function is implemented as the 

penalty function fD and fS. The number of warping steps per pyramid level is set as 3. The regularization 

parameter 1  is selected to be 5. We perform ten steps of alternating optimization at every pyramid level and 

change 2  logarithmically from 10-4 to 102. The scalar weight 3  is set as 1. A 5×5 size rectangular window is 

set as the smooth region of the flow field. To the eccentricity scaling parameter c, we just follow the general 

setting in [53] to set c as 0.08. To the parameter G , we simply follow the setting of GBVS in [32]. The 

parameter G  is set as 5. To the parameters in self-resemblance algorithm [56] and signature saliency model [57], 

we follow all standard setting in the release Matlab Toolbox from the authors.   

4.1. Experiments on Natural Human Scene Videos 

In the first experiment, we evaluate the proposed saliency detection models on the Hollywood-2 natural human 

scene videos dataset [55]. This dataset contains the natural dynamic samples of human in ten different natural 

categories, including: “house”, “road”, “bedroom”, “car”, “hotel”, “kitchen”, “living room”, “office”, 

“restaurant”, and “shop”. It consists of about ten hours of Hollywood movies and is split into 1152 video 

sequences. In this experiment, we want to demonstrate the performance of the proposed spatial and temporal 

saliency detection models for the object detection task. 

Based on the research of neuroscience, neurons in visual association cortex for example the inferior temporal 

cortex (IT), respond selectively to a particular object, especially to human faces. And the feedback originating in 

some higher level areas such as V4, V5, and IT can influence the human’s attention in a top-down manner. From 

eye tracking experiments on image dataset, Judd et al. found that humans fixated so consistently on people and 

faces [58]. Therefore, the object detection result especially the face detection region is often added into the final 

saliency map as a high level feature [20][58]. The objectness likelihood is also integrated into computational 

algorithm [59] to detect visual saliency. Their experimental results also evidence that, as one kind of reliable 

high-level information, the detection region of specific object detector is useful to build a better saliency map. 

Meanwhile, as we known, the good low-level saliency map should work as indicators for the object detection and 

recognition, especially the temporal saliency map based on motion detection. In our proposed temporal saliency 

detection model, we also assume the dynamic continuity could help us get the motion of the prominent object. 

Hence, in this experiment, we first compare the proposed VOIS with the representative spatial saliency models 

graph based saliency map [32]. Then, the proposed DCOF is compared with three saliency detection models, 

including two representative temporal saliency models [34][35][37] and one state of the art spatial-temporal 

saliency model [56]. First, we detect human’s face in every video sample of Hollywood-2 natural dynamic human 

scene videos dataset by the most commonly utilized face detector [60]. Then, all of the saliency detection models 

are used to generate the saliency maps. Third, the salient degree of the corresponding face regions in the saliency 

maps is calculated.  

In Table 2, we provide the average normalized salient values of different models on face regions in the second 

column. Moreover, the average detection accuracies of different models are given in the third column. Here, the 

correct detection is defined as more than half of the pixels in the corresponding regions have larger salient value 

than the threshold value 0.5 on the entire frame image. COF stands for classical optical flow model [34][35], SOF 

stands for spatial similarity optical flow model [37]. SR stands for the self-resemblance model based on spatial 

and temporal channels [56]. It is obvious that our model demonstrates best performance on both of evaluation 

standards and also both of pathways. From Table 2, we can find the temporal saliency map techniques achieve 
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better performance in face saliency detection than the spatial saliency map techniques. This is because, in the 

real-world video sequences, such as movies, the human face region is often the part containing apparent motion.  

 

 

 

 

Table 2. Face Saliency detection of different saliency model on Natural Dynamic Scene Videos 

Model Average Salient Value Average Detection Accuracy 

VOIS 0.5281 0.7653 

GBVS 0.4589 0.7375 

COF 0.6018 0.7537 

SOF 0.6393 0.7782 

SR 0.4624 0.7221 

DCOF 0.6501 0.8252 

 
In Fig. 3, we provide one example of the saliency detection results in this dataset. Fig. 3(a) is an original frame 

image from 95th frame in autotrain00045 clip of scene videos labeled as kitchen. Fig. 3(b) is the face detection 

results by [60]. Figs. 3(c) and 3(d) show the saliency map based on the spatial similarity optical flow model SOF 

and the saliency map overlaid on the original image. Figs. 3(g) and 3(h) provide the corresponding results of the 

proposed model DCOF. Here, we also provide the results in Fig. 3(e) and 3(f) based on self-resemblance [56], a 

video saliency detection model with spatial-temporal channels. According to the comparison, we can find the 

proposed dynamic saliency model emphasizes the dynamic continuity of neighbor locations in the same frame 

and same locations between the neighbor frames, the salient regions detected by our model can cover most of the 

informative areas of the image. The experimental results on natural dynamic scene video are even better than the 

self-resemblance model based on spatial and temporal channels [56]. These results also reveal the motion 

information in video sequence often includes the prominent objects, such as human faces. It enlightens that the 

proposed DCOF can be used to substitute the role of high-level features such as object detection feature maps in 

video saliency detection task. 

 

        
                                                 (a) Original frame image           (b) Face detection result 

       
                                             (c) Saliency map of SOF   (d) Saliency map overlaid of SOF 

        
                                                (e) Saliency map of SR      (f) Saliency map overlaid of SR 

      
(g) Saliency map of DCOF          (h) Saliency map overlaid of DCOF 
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Fig. 3. Temporal saliency detection results. 

4.2. Experiments on News Headline Videos 

As one kind of typical video sequences, the news headline videos are often selected as the materials to analyze 

the video saliency detection models, especially the temporal saliency detection models [61]. In the existing 

temporal saliency detection techniques, the widely used optical flow approaches rely on the motion vector 

between each frame pair independently. Unfortunately, although the optical flow techniques can accurately detect 

the motion in the direction of intensity gradient, it has some limitations in temporal saliency detection. The 

temporal saliency is not perfectly equal to the amplitude of all the motion between each frame pair. If some 

changes between adjacent frame pair exist in video, such as the change of illumination, or other kind of noise, it 

can be judged as the temporal salience by these optical flow techniques. In this case, the motion of the prominent 

object is possible to fade into the background. In addition, the independent calculation of each frame pair brings 

about a high computational complexity. Hence, to evaluate the efficiency performance of the proposed DCOF, in 

the second experiment, we test on three typical CNN Headline news videos. Each of the video clips is 

approximately 30 seconds and the frame rate is 30 frames per second. The resolution of the frame image is 

480×360. In this experiment, we compare our model with two representative temporal saliency models based on 

optical flow algorithms: the classical optical flow model [34][35] and the spatial similarity optical flow model 

[37]. 

We record the average running time per frame and the average output frame ratio over all frames in Table 3. 

The output frame ratio is defined as the number of the output motion frames divided by the number of video 

frames. All the codes are implemented in MATLAB R2012b on the test PC with Intel core I7-3520 2.9GHz and 

4.00GB RAM. Because our model automatically determines the motion saliency group, the dynamic saliency 

map needn’t to be calculated frame by frame. Therefore, our model demonstrates better efficiency and smaller 

storage capacity than existing models. 
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In Fig. 4, an example of the dynamic saliency detection results comparison is given. Fig. 4(a) demonstrates the 

original frame image of news video sequence. Fig. 4(b) is the saliency detection result of signature saliency 

model (SS) based on spatial pathway [57]. From these results, it is obvious that the spatial saliency map, which 

only catches the parts with high contrast, does not match the dynamic saliency in the video. In the video sequence, 

the action of person is not obvious between each adjacent frame pair. Unfortunately, the existing temporal 

saliency models based on optical flow method still estimate the motion between each adjacent frame pair 

independently as Fig. 4(c). According to considering the dynamic consistency of neighbor locations in the same 

frame and same locations in temporal domain, our temporal model can group the similar continuous actions 

together. Therefore, it reduces the running time and decreases the storage resource requirement. Furthermore, 

    
             20th Frame                            21st Frame                              22nd Frame                              23rd Frame     

                                                (a) Original frame image of news video sequence 

 

    
              20th Frame                           21st Frame                              22nd Frame                             23rd Frame  

                                                             (b) Saliency map detection by SS 

 

                          
     20th to 21st Frame                             21st to 22nd Frame                              22nd to 23rd Frame            

          (c)Motion detection by SOF 

 

  
   20th to 23rd Frame                                            

    (d)Motion detection by DCOF 

 
            Fig. 4. Dynamic saliency detection result. 
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there exists some change of illumination or other noises from 21st frame to 22nd frame. Although the change is not 

obvious in original video frames, it still influences the motion detection by SOF. The motion of some part in the 

person’s body is even drowned in optical flow vectors of SOF. Our proposed DCOF achieves better coverage of 

the prominent objects in Fig. 4(d). 

Table 3. Efficiency comparison on the News Headline Videos 

Model Running Time (s) Output Frame Ratio 

DCOF 33.12 0.4 

COF 46.24 1 

SOF 53.88 1 

4.3. Experiments on Eye-Tracking Action Videos 

Recently, tremendous attempts have been made in using perceptual saliency models to calculate the salient 

degree in accordance with human subjective attention allocation based on the eye tracking data. Therefore, we 

also test the proposed STAM on the largest real world actions video dataset with human fixations [20]. This 

action dataset is one of the most challenging available for real world actions. It contains 12 classes from 69 

movies: “AnswerPhone,” “DriveCar,” “Eat,” “FightPerson,” “GetOutCar,” “HandShake,” “HugPerson,” “Kiss,” 

“Run,” “SitDown,” “SitUp” and “StandUp.” The eye moments were recorded using an SMI iView X HiSpeed 

1250 tower-mounted eye tracker, with a sampling frequency of 500 HZ. The head of the subject was placed on a 

chin-rest located at 60cm from the display. The LCD display had a resolution of 1280×1024 pixels, with a 

physical screen size of 47.5×29.5cm. The tracking data is collected from 16 human volunteers (9 males and 7 

females) aged between 21 and 41 with low calibration error. In our experiment, we test on the first five videos of 

each category.  

To evaluate the performance of various saliency models, we provide the results of the average receiver 

operating characteristic (ROC) areas. The ROC curve is created by the fraction of true positive out of the 

positives (TPR = true positive rate) vs. the fraction of false positive out of the negatives (FPR = false positive 

rate), at various threshold settings. The ROC area can be calculated as the area under the ROC curve, and it 

demonstrates the overall performance of a saliency model.  

To evaluate the performance of our model, we provide the comparison of the ROC area coverage in spatial 

saliency map and temporal saliency map, respectively. In Table 4, we compare the proposed VOIS with the 

existing spatial saliency models, including: graph based saliency map [32], and the CAL_VOIS. CAL_VOIS is a 

simple version of VOIS whose orientation feature map just includes cardinal orientations. From Table 4, 

obviously, the proposed VOIS can cover larger ROC area than other existing spatial saliency map based on the 

standard orientation feature map in each category. Furthermore, even the information in oblique orientations are 

ignored, the ROC area coverage is comparable to GBVS. The statistical significance of the difference between 

the VOIS vs. GBVS is tested on paired t tests. According to the results of t test, the difference between them is 

significant (p<0.001). Then, we compare the area coverage of the proposed temporal saliency map and 

representative temporal saliency models based on previous optical flow techniques [34][35][37]. The ROC area 

results are provided in Table 4. We could easily observe the proposed DCOF achieves the largest coverage of the 

fixation points. In most of categories, the temporal saliency models achieve better ROC area coverage. But to 

some cases, such as: “DriveCar” and “GetOutCar”, the spatial saliency models obtain better performance. One 

sample of the video sequences from “DriveCar” category with fixations is demonstrated in Fig. 5(a). From this 

video, we can find that the movement of the objects out of the window is much more conspicuous than the 

movement inside of the car. But this kind of movements is not the focus of viewers. Therefore, in this case, the 

motion saliency map shown in Fig. 5(b) cannot cover the subjects’ fixations. 

We also combine some representative spatial saliency detection models with different temporal saliency 

detection models and then compare with the proposed STAM. The average ROC area comparison in every 
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category is shown in Fig. 6. Compared with the results shown in Table 4, it can be found that almost all the 

integrations are better than any separated one. STAM reaches the best ROC area coverage. Furthermore, in this 

dataset, one example of the video saliency detection results with fixations of our proposed STAM is 

demonstrated in Fig. 7. In 2nd frame, the man stands quietly and looks outside from the window. The spatial 

saliency map is dominant and obtains good fixations coverage. Outside the window, we find a boy with white 

coat is running along the road. Therefore, the temporal saliency map is dominant in attention model from the 17th 

frame to the 55th frame, and our output attention map has peak salient value in the body of the running boy. 

We also combine some representative spatial saliency detection models ( with different temporal saliency 

detection models and then compare with the proposed STAM. The average ROC area comparison in every 

category is shown in Fig. 6. Compared with the results shown in Table 4, it can be found that almost all the 

integrations are better than any separated one. STAM reaches the best ROC area coverage. Furthermore, in this 

dataset, one example of the video saliency detection results with fixations of our proposed STAM is 

demonstrated in Fig. 7. In 2nd frame, the man stands quietly and looks outside from the window. The spatial 

saliency map is dominant and obtains good fixations coverage. Outside the window, we find a boy with white 

coat is running along the road. Therefore, the temporal saliency map is dominant in attention model from the 17th 

frame to the 55th frame, and our output attention map has peak salient value in the body of the running boy. 

Table 4. ROC area comparison of spatial saliency models/temporal saliency models on the eye-tracking action videos 

ROC Area 
Spatial Saliency Models Temporal Saliency Models 

VOIS CAL_VOIS GBVS DCOF COF SOF 

AnswerPhone 0.5152 0.5030 0.4979 0.6098 0.5303 0.5910 

DriveCar 0.6126 0.6050 0.6076 0.5233 0.4817 0.5195 

Eat 0.6310 0.6278 0.6246 0.6902 0.6598 0.6644 

FightPerson 0.5057 0.4913 0.4959 0.6045 0.5535 0.6005 

GetOutCar 0.5751 0.5720 0.5707 0.5260 0.4874 0.5212 

HandShake 0.4730 0.4720 0.4716 0.6993 0.6485 0.6934 

HugPerson 0.4625 0.4610 0.4544 0.6402 0.5602 0.5996 

Kiss 0.4912 0.4855 0.4787 0.5833 0.5120 0.5503 

Run 0.5469 0.5360 0.5268 0.5535 0.5104 0.5496 

SitDown 0.5999 0.5946 0.5862 0.5183 0.4761 0.5074 

SitUp 0.4840 0.4854 0.4822 0.5171 0.4871 0.5006 

StandUp 0.6628 0.6594 0.6530 0.5602 0.5269 0.5601 
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Fig. 5. (a) One sample of the video sequences from “DriveCar” category with fixations (white dots), (b) Temporal saliency 

map visualization to the corresponding video frame with fixations. The red box represents the movement in the current frame. 

 

 

 

 

 

 
Fig. 6. Average ROC area comparisons of different combination of spatial saliency map and temporal saliency map in all 

categories. 
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5. Conclusions 

This paper proposes a novel spatial-temporal saliency detection model for video saliency detection. In spatial 

saliency detection, we follow three stages of the classical bottom-up spatial saliency features. We propose a 

human-like orientation feature map extraction based on the visual orientation inhomogeneity of human 

perception, and combine the orientation feature with other extracted low-level features as feature maps. In 

temporal saliency detection, a novel optical flow model is proposed based on the dynamic consistency of motion. 

Two major advantages of the proposed model can be achieved: (1) effective prominent object detection and 

coverage; and (2) better efficiency and limited storage capacity. According to the empirical validation on three 

video datasets, the results demonstrate the performance of the proposed spatial saliency model based on the 

visual orientation inhomogeneity of human perception goes beyond the existing spatial saliency models. As well 

as the progress in spatial saliency models, the proposed temporal saliency model also demonstrates better 

effectiveness and efficiency than the representative optical flow models. Experimental results clearly evidence 

that the extracted salient regions by the proposed spatial-temporal model are consistent with the eye tracking data.  

Future work will be explored from two aspects. First, we will investigate how to explore our model to other 

                        2nd Frame                                      17th Frame                                     36th Frame                                      55th Frame 

 

(a)Original frame image of news video sequence 

 
           (b)Fixations of subjects on corresponding video frames (red dots) 

 

           (c)Saliency map overlaid of STAM with fixations (white dots) 

         Fig. 7. Example of video saliency detection results with fixations. 


