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ABSTRACT 
Steganographer detection task is to identify criminal users, who 
attempt to conceal confidential information by steganography 
methods, among a large number of innocent users. The 
significant challenge of the task is how to collect the evidences 
to identify the guilty user with suspicious images, which are 
embedded with secret messages generating by unknown 
steganography and payload. Unfortunately, existing methods for 
steganalysis were served for the binary classification. It makes 
them harder to classify the images with different kinds of 
payloads, especially when the payloads of images in test dataset 
have not been provided in advance. In this paper, we propose a 
novel steganographer detection method based on multiclass deep 
neural networks. In the training stage, the networks are trained 
to classify the images with six types of payloads. The networks 
can preserve even strengthen the weak stego signals from secret 
messages in much larger receptive filed by virtue of residual and 
dilated residual learning. In the inference stage, the learnt model 
is used to extract the discriminative features, which can capture 
the difference between guilty users and innocent users. A series 
of empirical experimental results demonstrate that the proposed 
method achieves good performance in spatial and frequency 
domains even though the embedding payload is low. The 
proposed method achieves a higher level of robustness of inter-
steganographic algorithms and can provide a possible solution to 
address the payload mismatch problem. 
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1 INTRODUCTION 
Image steganography is the technique of concealing secret 
messages within images, so that the existence of the hidden data 
is not obvious in covert communication [1]. In general, the 
image in which the secret messages are intended to be embedded 
is termed as the cover image, and the image which includes 
messages is referred to the stego image [2]. Image steganalysis, 
from an opponent’s perspective, is an art of revealing the 
presence of secret messages in the images, which are hidden by 
the steganographer [3]. Steganography and steganalysis are in a 
hide-and-seek game [3]. They try not only to beat each other, 
but also to create strategic coalitions to develop.  

Currently, most of image steganalytic techniques are devoted 
to separate a suspicious image as cover image or stego image. 
This problem is termed as stego detection problem. However, in 
the real-world situation, there exist multiple users, and each user 
will transmit vast numbers of images. Moreover, only some of 
users are guilty of using unknown and diverse steganography 
with unknown embedding parameters such as embedding 
payload. It’s more practical than the “laboratory environment” in 
most of image steganalytic tasks. Image steganalytic techniques 
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are desired to solve more challenges beyond the laboratory 
conditions. Therefore, in this paper, we devote to investigate a 
completely different problem: identifying which users try to hide 
secret messages into the images with steganography among 
many innocent users [4]. This kind of user is called as the guilty 
actor (or guilty user). This problem is known as steganographer 
detection problem. It poses significant challenge in comparisons 
of stego detection problem, which is how to collect the evidences 
from multiple images of suspicion, and then to identify the guilty 
user. We believe that steganographer detection will play an 
imperative role in many significant multimedia security 
applications. 

Most of existing steganographer detection methods mainly 
depend on the handcrafted features based on the traditional 
steganalytic algorithms. As the first attempt, in [5], Ker et al. 
extracted PEV-274 features [6] from each image and calculate the 
distance of each pair of users by maximum mean discrepancy 
(MMD) [7]. Finally, they formulated the steganographer 
detection task as a clustering problem to separate the guilty user 
from majority innocent users. In 2012 and 2014, Ker et al. 
considered the steganographer as the outlier among innocent 
users and proposed to replace hierarchical clustering by the local 
outlier factor (LOF) method [8] to rank user’s possibility of being 
guilty according to the degree of anomaly [9, 10]. In 2016, Li et al. 
proposed a method that used high-order joint features and 
clustering ensembles [4]. The high-order joint features were 
procured from high-order joint density matrices of Discrete 
Cosine Transformation (DCT) coefficients from JPEG images. In 
2017, Li et al. extended the work in the way of proposing a 
sampling construction strategy [11]. They designed an 
embedding probability calculation model and selected DCT 
blocks with higher embedding probability to reconstruct a 
sample image. Then, they extracted a 155-D reduced PEV feature 
set from each sample image. Finally, the agglomerative 
hierarchical clustering was used to identify the guilty user 
according to their corresponding MMD distances. 

In these years, deep learning based methods have achieved 
great success in many multimedia tasks, such as image retrieval 
[12], face recognition [13], emotion recognition [14] and so on. 
One of the most important contributions of deep learning 
techniques is extracting more efficient features through features 
auto-learning rather than handcrafted. Currently, there is limited 
existing work based on deep learning to solve the 
steganographer detection task. However, many works [15–24] 
based on deep learning techniques have been proposed for 
steganalysis, which is close to steganographer detection task. 
These methods directly learn the discriminative features to 
separate stegos from covers, which are benefit from the process 
in deep learning techniques. For instance, in 2016, Xu et al. 
reported a well-designed convolutional neural network (CNN) 
architecture which took into account of the knowledge of 
steganalysis [18]. The results demonstrated that the proposed 
model was competitive compared with that achieved by the 
spatial rich model. In 2017, Xu presented an empirical study on 
applying CNNs to detect JPEG version of the UNIversal WAvelet 
Relative Distortion [23]. Wu et al. proposed the deep residual 

network for image steganalysis [20]. By virtue of the deep 
residual learning, the network could capture the weak signals 
from the secret messages which brought that the proposed 
model achieved better performance than the classical method 
spatial rich model and several other CNN-based models. 

Inspired by these steganalytic methods based on deep 
learning, in 2017, we were first to propose the steganographer 
detection method based on deep residual network [25]. The 
effective features extracted by residual learning were used to 
calculate the distance between each pair of users by MMD. 
Finally, the guilty user was identified by the agglomerative 
hierarchical clustering algorithm. Although the proposed 
framework could achieve good detection accuracies in spatial 
domain when the payload was low, all of stego images must be 
paired with their corresponding cover images when extracting 
the features both in training and the inference stage. 

Currently, existing methods for the steganographer detection 
task mainly depend on the features extracted from the 
steganalytic methods. In other words, the features are utilized to 
separate stego image from cover image. However, these existing 
works based on deep learning for steganalysis were served for 
the binary classification. Thus, these methods ignore the 
important information from stego images, such as the 
embedding payload. Let us think about the distortions caused by 
different payloads. We believe the distance between cover image 
and stego image with low payload, e.g. 0.1 payload, is smaller 
than the distance between stego images with 0.1 and 0.4 
payloads. But in the binary classification for image steganalysis, 
this kind of differences has been ignored. This ignorance makes 
it harder to classify the images with different kinds of payloads, 
especially when the payloads of images in test dataset have not 
been provided in advance. This phenomenon belongs to the 
cover-source mismatch problem [26], which makes the detection 
accuracy much lower, especially when the payload is low. To 
solve this challenge, one kind of solution is to train each model 
for each payload, and then utilizes the ensemble strategy to 
obtain the final result based on all models. But it inevitably 
requires high computational complexity. 

In our paper, we propose a novel steganographer detection 
method based on multiclass deep neural networks. In machine 
learning, multiclass is the problem of classifying instances into 
one of three or more classes. In our model, the dilated residual 
networks are trained for multiclass classification of images with 
six kinds of embedding payloads. In the inference stage, we 
employ the learnt model as the feature extractor to extract the 
discriminate features from each image of each user. Then, the 
agglomerative hierarchical clustering algorithm is used to 
identify the steganographer according to the corresponding 
distance metrics. To our best knowledge, we are the first to 
propose a steganographer detection framework based on 
multiclass neural networks. This multiclass neural networks are 
an attempt to solve the payload mismatch problem. In our 
experiments, we also find that the multiclass neural networks 
can learn effective features from the information of relatively 
high payloads and promote to separate the low payload 
embedded stegos from the covers. 
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Figure 1: Multiclass deep neural networks based steganographer detection. 

2 PROPOSED METHOD 
In this paper, we propose a novel steganographer detection 
method based on multiclass deep neural networks. Fig. 1 
illustrates the framework of Multiclass Deep Neural Networks 
based Steganographer Detection (MDNNSD). In the training 
stage, the multiclass dilated residual networks are trained for the 
classification of images with six types of embedding payloads. In 
the testing stage, the learnt model is utilized to extract features 
of each image from each user. Then, the distance between each 
pair of user is calculated based on MMD algorithm. Finally, the 
agglomerative hierarchical clustering algorithm is performed to 
identify the guilty user. 

2.1 Feature Extraction via Multiclass Neural 
Networks 

As illustrated in Fig. 1, in the learning part, the multiclass neural 
networks are learnt to classify images with six types of 
embedding payloads. In the inference part, the learnt model is 
utilized to extract the features of each image from each user. The 
proposed networks consist of three parts: the pre-processing 
stage, the feature learning stage and the classification stage. 

The pre-processing stage aims to extract the message (noise) 
component, which includes two layers: the High-Pass-Filtering 
(HPF) layer and the truncation layer. As we known, the 
steganographic algorithm can be considered as adding low-
amplitude additive noise to cover images. Hence, it means the 
weak stego signals have much lower amplitude in comparison of 
that of the image content. To suppress image content and extract 
effective information from low signal-to-noise ratio (SNR) stego 
signals, in the HPF layer, 20 high-pass filters are used to extract 

the high frequency components from the input. To guarantee the 
pre-processing stage has the ability to extract the high frequency 
component, each filter of HPF layer is initialized by a high-pass 
kernel. In the truncation layer, we try to use the truncation unit 
to constrain the dynamic range of input feature maps. This 
setting is also used to improve the convergence speed. The 
truncation unit is defined by Eq. 1 as follows:  

where T denotes the truncation threshold. 
The feature learning stage is to extract the discriminative 

features. This sub-network mainly consists of two kinds of units: 
the Res and the D-Res units. The structure of the Res and the D-
Res units are shown in Fig. 2. In the feature learning stage, the 
networks first use 20 convolutional kernels with the size of 7×7 
to preserve the noise components generated in the pre-
processing stage. Then, a series of units are utilized to extract 
the discriminative features, which include the residual learning 
units and dilated residual learning units. For the residual 
learning block in residual learning units, it fits the residual 
function F(s) := H(s) – s rather than approximating an 
underlying function H(s) directly, which can be implemented by 
feedforward networks with the shortcut connections [27]. He et 
al. has proved that the networks could be easier to optimize by 
the short connections [27]. Some prior works have also proved 
that deep residual learning is benefit for extracting effective 
patterns from weak stego signals [20, 25].  Hence, in the feature 
learning stage, we take advantage of the residual learning to 
capture the weak stego signals from the steganographer. 

,   

( ) ,     

,     

T x T

Trunc x x T x T

T x T

  
   
 

 (1) 
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Specifically, for the Res unit, it first uses the projection shortcut 
connection to increase the dimension of feature map, and then 
directly utilizes the identity shortcut connections in the 
following repeated building blocks. 

The structure of D-Res unit is similar with that of the Res 
unit in addition to replacing all convolutional layers with the 
dilated convolutional layers. In our networks, we take advantage 
of the dilated residual unit with a larger receptive field. It is 
utilized to preserve the effective information from the weak 
signals generated by the guilty user. After a series of units 
processing, an average pooling layer with the size of 16×16 to 
transform the feature maps into feature vectors. 

       

Figure 2: The structure of the Res and the D-Res units. 
Conv represents convolutional layers, with kernel sizes 
following (number of kernels) × (height × width × 
number of channels). L denotes the number of residual or 
dilated residual learning blocks. D denotes the dilation 
value in the dilated convolutional layers. 

For the classification stage, in the training phase, the 
networks map extracted feature vectors into six labels. Six 
output nodes correspond to the embedding payload of the image, 
i.e., 0, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. To train the networks, 
the feature vectors, which are generated by the last pooling layer 
in the feature learning stage, are fully connected to the six 
output nodes for multiclass classification. In the inference stage, 
we consider the learnt model as the feature extractor. Therefore, 

320-D feature vector of each image from each user is generated 
from the last average pooling layer in the feature learning stage. 

2.2 Distance Metrics based on MMD 
By virtue of multiclass deep neural networks, the discriminative 
features of each image from each user are extracted via the 
learnt model. Then, the distance between each pair of users is 
calculated by maximum mean discrepancy (MMD) based on the 
extracted features. Mathematically, MMD is employed to 
measure the similarity between two probability distributions. In 
our work, we use MMD as the distance metrics to calculate the 
similarity between feature sets from any pair of users. 

We denote a set of m users as U1, U2, …, Um, which include 
one guilty user and m-1 innocent users, and each of them 
transfers n images. The feature sets FX = (x1, x2, … xn) and FY = 
(y1, y2, …, yn) are extracted from the images transferred by UX 
and UY, where xi and yi (1 ≤ i ≤ n) denote a 320-D feature vector 
of an image from UX and UY, respectively. The sample estimate 
for the MMD distance of UX and UY is defined by Eq. 2 as follows: 

       2 2 2
, 1 , 1 , 1

1 2 1
,  , , ,

n n n

X Y i j i j i j
i j i j i j

d U U k k k
n n n  

    x x x y y y  (2) 

where k(x, y) represents a positive definite kernel function, 
including the linear kernel and the Gaussian kernel. In this paper, 
we employ the Gaussian kernel to calculate the MMD distance.  

2.3 Steganographer Detection by Hierarchical 
Clustering 

After the MMD distance between each pair of users is calculated, 
we identify the steganographer (guilty user) based on the MMD 
distance by using the agglomerative hierarchical clustering 
algorithm. 

The agglomerative hierarchical clustering algorithm is a 
representative method of cluster analysis. Initially, each user is 
considered as a singleton cluster. Then, the nearest two clusters 
are combined by using the linkage function and form a new 
larger cluster. It is repeated until the last cluster is linked and a 
complete binary hierarchical tree is formed. Ideally, for the 
steganographer detection task, all the innocent users should be 
clustered as a cluster and the other cluster only consists of the 
guilty user. 

In this paper, we use four kinds of linkage functions to 
calculate the distance between two clusters based on the MMD 
distance, including the average linkage, the single linkage, the 
complete linkage, and the weighted average linkage. 

3 EXPERIMENTS 
A series of empirical experiments are conducted on two standard 
datasets. In Section 3.1, we test the proposed method on a 
standard spatial domain dataset BOSSbase ver 1.01 [28]. Then, in 
Section 3.2, we further evaluate the proposed method in 
frequency domain. The images from BOSSbase ver 1.01 are 
compressed with JPEG quality factor 80, and they are used to test 

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

303



 

the effectiveness of the proposed method. In the following 
sections, we call it as JPEG version of BOSSbase ver 1.01. 

For the training stage of our proposed networks, parameters 
are updated by stochastic gradient descent. Each element Wij in 
the weight matrix W is initialized by the improved “Xavier” 
method [29], i.e., Gaussian distribution with zero mean and the 
standard deviation inversely proportional to the number of 
network’s connections. The bias vectors are initialized to zeros. 
The threshold T in the truncation layer is set to 5. The 
momentum and weight decay in our networks are set to 0.9 and 
0.0001, respectively. A mini-batch with 40 images (20 cover-stego 
pairs) is used as the input for training. We adaptively adjust the 
learning rate in the training phase. Specifically, the learning rate 
is initialized to 0.001 and scheduled to decrease 10% for every 50 
training epochs. All of the experiments are conducted on a Tesla 
K80 GPU. 

3.1 Steganographer Detection in Spatial 
Domain 

In this section, we evaluate the proposed method for the 
steganographer detection task in spatial domain from easy to 
difficult cases. 

3.1.1 Experimental Setting. The standard dataset BOSSbase 
ver 1.01 is utilized to validate our proposed method. The original 
BOSSbase ver 1.01 consists of 10,000 grayscale images with the 
size of 512×512. Following the setting in [16, 20, 25], each image 
of the original dataset is cropped into four non-overlapping sub-
images with the size of 256×256. In the training stage, 20,000 
cover images are selected randomly from all cropped images, and 
their five kinds of stego images are generated by Spatial version 
of the UNIversal WAvelet Relative Distortion (S-UNIWARD) 
steganography [30] at five kinds of payloads. The payloads are 
set from 0.1 to 0.5 bit-per-pixel (bpp) with step 0.1. Thus, these 
images are constructed 100,000 cover-stego pairs, and they are 
used for training the multiclass deep neural networks. The 
remaining 20,000 covers and their corresponding stegos are 
utilized to evaluate the performance of our model in detecting 
the guilty user. In our experiments, we randomly selected m 
users, which include one guilty user and m-1 innocent users, and 
each of them transfers n images. All the statistical experiments 
are repeated 100 times, and each time, m is set to 100 and n is set 
to 200. The average results are reported. 

In spatial domain, we use five content-adaptive 
steganography to embed the messages into the images, i.e. S-
UNIWARD [30], HIgh-pass Low-pass Low-pass (HILL) [31], 
Wavelet Obtained Weights (WOW) [32], Highly Undetectable 
steGO implemented using the Gibbs construction with Bounding 
Distortion (HUGO-BD) [33], and Minimizing the power of the 
most POwerful Detector (MiPOD) [34]. 

We compare our method with the conventional method 
SRMQ1_SD, and two CNN-based methods, including: ANSD and 
XuNet_SD. SRMQ1_SD is the steganographer detection method 
via SRMQ1 [35], which is a well-known spatial rich model with a 
single quantization step. ANSD is the steganographer detection 
method via a well-known deep CNN architecture AlexNet [36]. 

We modify the network slightly. First, the input size of the 
network is modified as 256×256×3. Second, the number of 
neurons in the first two fully-connected layers is modified as 
1,000. The last fully-connected layer has 2 neurons to classify the 
covers and stegos. Each image is first filtered by the KV filter 
proposed by Qian et al. [16] and the input image of the network 
is the filtered image. In the training stage, the model is only 
trained on S-UNIWARD at 0.4bpp. Considering AlexNet is 
served for the classification of ImageNet Dataset and the number 
of images of ImageNet is far more than that of BOSSbase. Thus, 
the size of min-batch is reduced from 256 to 64 (32 cover-stego 
pairs). To other parameters, we just follow the general setting. 
XuNet_SD is the abbreviation of the steganographer detection 
method based on the network proposed by Xu et al. [18]. As a 
matter of convenience, we refer this network as XuNet. It is 
noticed that the input size of XuNet is modified as 256×256, 
which is in accord with the input size of our networks. The size 
of mini-batch is set to 40 (20 cover-stego pairs). In the training 
phase, the model is only trained on S-UNIWARD at 0.4bpp. In 
addition, we train the model once and use the learnt model for 
testing the steganographer detection task instead of training it 
five times for ensemble learning as described in [18].  

3.1.2 A Single Steganographic Algorithm with A single 
payload. In this subsection, we aim to evaluate our proposed 
method under a simple condition. In detail, the stego images of 
the guilty user are generated by one steganographic algorithm 
(S-UNIWARD) at one payload. The payload is set to 0.05, 0.1, 0.2, 
0.3 and 0.4. Here, we employ the single linkage as the clustering 
linkage function. We compare our proposed method with 
classical method SRMQ1_SD and two CNN-based methods 
including ANSD and XuNet_SD. The comparison results are 
shown in Table 1. 

Table 1: The Detection Accuracy Comparisons of Different 
Methods on S-UNIWARD with a Single Payload. 

Payload 
(bpp) 

Method 
Feature 

Dimension 
Average Distance Acc. 

(%) 
STD 

AD1 AD2 

0.05 

MDNNSD 320 0.0763 0.0836 6 0.24 
ANSD 1,000 0.0771 0.0807 5 0.22 

XuNet_SD 128 0.0757 0.0762 2 0.14 
SRMQ1_SD 12,753 0.0757 0.0753 0 0 

0.1 

MDNNSD 320 0.0763 0.1148 84 0.37 
ANSD 1,000 0.0773 0.0988 73 0.45 

XuNet_SD 128 0.0761 0.0801 2 0.14 
SRMQ1_SD 12,753 0.0753 0.0757 0 0 

0.2 

MDNNSD 320 0.0762 0.2028 100 0 
ANSD 1,000 0.0772 0.1610 100 0 

XuNet_SD 128 0.0753 0.0990 71 0.46 
SRMQ1_SD 12,753 0.0751 0.0748 0 0 

0.3 

MDNNSD 320 0.0763 0.2743 100 0 
ANSD 1,000 0.0771 0.2285 100 0 

XuNet_SD 128 0.0756 0.1324 100 0 
SRMQ1_SD 12,753 0.0747 0.0734 1 0.1 

0.4 

MDNNSD 320 0.0764 0.3476 100 0 
ANSD 1,000 0.0773 0.2756 100 0 

XuNet_SD 128 0.0754 0.1718 100 0 
SRMQ1_SD 12,753 0.0748 0.0772 2 0.14 
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From Table 1, we can find that three CNN-based methods can 
detect the steganographer accurately when the payload is 
greater than 0.2. However, the classical method, SRMQ1_SD 
cannot detect the guilty user in most of cases. For the average 
distance, AD1 and AD2 is the average distance between the 
features of innocent users, and the average distance between the 
features of the guilty user and innocent users, respectively. 
Obviously, the value of AD1/AD2 is high means that the guilty 
user is more deviated from innocent users. We can find that the 
value of AD1/AD2 of SRMQ1_SD is smaller than other CNN-
based methods. Besides, we can observe that the feature 
dimension of SRMQ1_SD is 12,573, which is much larger than 
other CNN-based methods. Although the high-dimensional rich 
models with ensemble classifiers are benefit for the steganalysis 
task, the performance of SRMQ1_SD is not good for 
steganographer detection task due to the high dimension of the 
extracted features. Based on these results, we can make the 
conclusion that CNN-based methods can effectively capture 
features to distinguish the guilty user from innocent users. In 
addition, the detection accuracies of all methods decrease with 
the decrease of the payload. However, our proposed method 
outperforms other CNN-based methods when the payload is 
lower than or equal to 0.2. It means our proposed method can 
detect the guilty user more effectively when the payload is low. 

3.1.3 Multiple Steganographic Algorithms with A Single 
Payload. In this subsection, we try to test the performance of the 
proposed method when the stego images of the guilty user are 
generated through data embedded by multiple steganographic 
algorithms (S-UNWARD, HILL, WOW, HUGO-BD, and MiPOD) 
with a single payload. That is, for the guilty user, the images are 
equally divided into five groups. The images of each group 
include messages embedded by each steganographic algorithm. 
The payload is set to 0.05, 0.1, 0.2 and 0.3, respectively. Here, we 
also use the single linkage function. The detection accuracies are 
displayed in Fig. 3. 

 

Figure 3: The detection accuracies of MDNNSD, ANSD and 
XuNet_SD. The models are tested on multiple 
steganographic algorithms with a single payload. 

As Fig. 3 shows, although the condition is more difficult, all 
of the CNN-based methods can detect the guilty user 
successfully in most of cases. When the payload is 0.1, the 
accuracies of our proposed method and ANSD are higher than 
XuNet_SD. For AlexNet, which is a well-known CNN model for 
image classification, we can find the features extracted from it 
can effectively distinguish the stego images and cover images. In 
spite of this, our proposed method shows a higher level of 
robustness of inter-steganographic algorithms. However, when 
the payload is 0.05, all methods cannot detect the guilty user well. 
As we know, when the embedding payload is low, the stego 
image is similar to the cover image, making models harder to 
distinguish the guilty user from innocent users. 

3.1.4 The Comparisons of Different Training Strategies. In 
this subsection, we test the performance of the proposed 
networks under different training strategies. In detail, the first 
training strategy is the networks are trained on S-UNIWARD at 
0.1bpp, which is named as DNNSD_01. The second is that the 
networks are trained on S-UNIWARD at 0.4bpp, which is termed 
as DNNSD_04. Specifically, for these two strategies, the models 
are trained for binary classification (cover/stego), and the 
training networks map the input images into two labels. On the 
contrary, the networks in our proposed method are trained for 
multiclass classification. All of three models are tested on S-
UNIWARD at 0.1 and 0.4bpp, respectively. We compare our 
proposed method, MDNNSD with these two other training 
strategies. The performance of the networks under different 
training strategies is shown in Fig. 4. 

       
(a) Average                               (b) Complete 

    
(c) Single                                   (d) Weighted 

Figure 4: The comparison results of different models on S-
UNIWARD at 0.1 and 0.4bpp, respectively. Different colors 
represent different linkage functions. 

Fig. 4 shows that the performance of our proposed method 
outperforms other strategies. In other words, the model trained 
for multiclass classification is better than those trained for 
binary classification even though the payload used in training 
stage is the same as the testing payload. Moreover, compared 
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with DNNSD_04 testing on 0.1bpp, the performance of 
DNNSD_01 tested on 0.1bpp is worse. As we all know, when the 
payload is low, the stego image is much similar to the cover 
image. Thus, when DNNSD_01 is trained on the images with low 
payload, the learnt model cannot capture more useful 
information from the weak stego signal. For a fair comparison, 
we also test the performance of the similar model but training 
for binary classification on the images embedded by S-
UNIWARD with six kinds of payloads. We can find the 
performance of that case is worse than the performance of our 
proposed method. For instance, under the single linkage function, 
the detection accuracy of this similar model tested on 0.1bpp is 
29%, while the detection accuracy of our proposed model is 84%. 
Thus, we can make the conclusion that the outstanding 
performance of our method is mainly dependent on the proposed 
multiclass networks rather than more samples from different 
payloads. 

3.2 Steganographer Detection in Frequency 
Domain 

In Section 3.1, we have evaluated the effectiveness of our 
proposed method for the steganographer detection task in spatial 
domain. In this section, we extend the task to frequency domain, 
and devote to evaluate whether our proposed method can 
identify the guilty user in frequency domain or not. 

3.2.1 Experimental Setting. Consistent with the setting in 
Section 3.1.1, each image from the original BOSSbase ver 1.01 is 
cropped into four non-overlapping sub-images. Then, each sub-
image is compressed with JPEG quality factor 80 using Matlab’s 
imwrite function. All of these cropped JPEG images compose the 
JPEG version of BOSSbase ver 1.01 dataset, which is utilized to 
validate the performance of our method in frequency domain. 
We also randomly select 20,000 images from the cropped JPEG 
images and their corresponding stego images generated by JPEG 
version of the UNIversal WAvelet Relative Distortion (J-
UNIWARD) [30] at five kinds of payloads to train the model. The 
payloads are set from 0.1 to 0.5 bits per non-zeros Alternating 
Current DCT coefficient (bpnzAC) with step 0.1. The rest 20,000 
covers and their corresponding stegos are used to validate our 
proposed method in steganographer detection task. Keeping the 
same setting in spatial-domain experiments, m users are 
randomly selected and each of them transfers n images. All the 
statistical experiments are repeated for 100 times, and each time, 
m is set to 100 and n is set to 200. The average accuracy is used 
as basis for evaluation. 

In frequency domain, we use two JPEG-domain 
steganographic algorithms to embed messages, including: J-
UNIWARD [30], and no-shrinkage F5 (nsF5) [37]. J-UNIWARD is 
a kind of content-adaptive steganographic algorithm, which is 
more difficult than nsF5. We compare our proposed method with 
the classical method PEV_SD, and the CNN-based method ANSD. 
PEV_SD is the steganographer detection framework based on the 
PEV-274 features. The parameters setting of ANSD is identical to 
that of ANSD in spatial domain. Similar to what has been done 
in JPEG-domain steganalytic methods [23, 38], each image in 

JPEG format is first decompressed into the spatial domain. Then, 
the decompressed JPEG images are used as the input of all 
models. 

3.2.2 A Single Steganographic Algorithm with A single 
payload. In the first experiment in frequency domain, we try to 
compare our proposed method with two other methods under a 
simple condition. For the guilty user, two hundred stego images 
include message embedded by a single steganographic algorithm 
with a single payload. We test the performance of all models in 
four cases, including: J-UNIWARD at 0.1bpnzAC, J-UNIWARD at 
0.4bpnzAC, nsF5 at 0.1bpnzAC, and nsF5 at 0.4bpnzAC, 
respectively. Here, we use the single linkage as the linkage 
function in the clustering algorithm. The experiment results are 
provided in Table 2. 

Table 2: The Detection Accuracy Comparisons of Different 
Methods Tested on a Single Steganographic Algorithm 

with a Single Payload. 

Case Method 
Feature 

Dimension 
Acc. (%) STD 

J-UNIWARD at 
0.1bpnzAC 

MDNNSD 320 58 0.5 
ANSD 1,000 1 0.1 

PEV_SD 274 0 0 

J-UNIWARD at 
0.4bpnzAC 

MDNNSD 320 100 0 
ANSD 1,000 100 0 

PEV_SD 274 4 0.2 

nsF5 at 
0.1bpnzAC 

MDNNSD 320 65 0.48 
ANSD 1,000 8 0.27 

PEV_SD 274 2 0.14 

nsF5 at 
0.4bpnzAC 

MDNNSD 320 100 0 
ANSD 1,000 100 0 

PEV_SD 274 90 0.3 
 
From Table 2, we can observe that the classical method 

PEV_SD achieves good performance in the case of nsF5 at 
0.4bpnzAC due to the lower dimension of features. However, in 
the case of J-UNIWARD at 0.4bpnzAC, the accuracy of PEV_SD 
is low. It is owing to J-UNIWARD is a content-adaptive 
steganography, which is more difficult than nsF5. For the CNN-
based methods, both of them can achieve good performance 
when the payload is high. This illustrates the CNN-based method 
is effective for steganographer detection task in frequency 
domain. However, when the payload is low, i.e. 0.1bpnzAC, 
ANSD and PEV_SD are inferior to our proposed method. In 
other words, our proposed method can effectively solve the 
steganographer detection problem in spatial and frequency 
domain under low payload condition. In addition, compared with 
the performance of our proposed method in spatial domain, the 
detection accuracies of that in frequency domain are lower. It is 
due to these images loss detail information in the compression 
and decompression procedure, and this detail information are 
used to hide the weak stego signal. 

4 CONCLUSIONS 
In this paper, we propose a novel steganographer detection 
method based on multiclass deep neural networks. To our best 
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knowledge, we are the first to propose a steganographer 
detection framework based on multiclass neural networks. In the 
training stage, the proposed multiclass neural networks are 
trained to classify the images with six types of embedding 
payloads. In the inference stage, the learnt model is served as the 
feature extractor, which utilizes to extract the features of each 
image from each user. Finally, the agglomerative hierarchical 
clustering algorithm is utilized to identify the steganographer 
based on the MMD distance metric. 

In the experiments, we evaluate the effectiveness of the 
proposed method on two standard datasets in different image 
domain. In spatial domain, the proposed method can accurately 
identify the guilty user from easy to difficult conditions, 
especially the low embedding payloads. Moreover, the proposed 
method demonstrates its robustness under inter-steganographic 
algorithms situations. In frequency domain, the performance of 
the proposed method outperforms other methods when the 
payload is low. In future work, we seek to apply our proposed 
method under the real-world large-scale social media networks. 
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