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Abstract With the proliferation of video data, video summarization is an ideal tool
for users to browse video content rapidly. In this paper, we propose a novel foveated
convolutional neural networks for dynamic video summarization. We are the first to inte-
grate gaze information into a deep learning network for video summarization. Foveated
images are constructed based on subjects’ eye movements to represent the spatial infor-
mation of the input video. Multi-frame motion vectors are stacked across several adjacent
frames to convey the motion clues. To evaluate the proposed method, experiments are
conducted on two video summarization benchmark datasets. The experimental results val-
idate the effectiveness of the gaze information for video summarization despite the fact
that the eye movements are collected from different subjects from those who generated
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summaries. Empirical validations also demonstrate that our proposed foveated convolu-
tional neural networks for video summarization can achieve state-of-the-art performances
on these benchmark datasets.

Keywords Video summarization · Convolutional neural networks · Eye movement ·
Foveated image

1 Introduction

As video data grows explosively in recent years, browsing such a huge quantity of videos
is time-consuming and tedious. As a matter of fact, video summarization is an ideal tool
for people to watch the video in a rapid way, which provides a compact form of the input
video [10, 33, 34]. Generally, video summarization can be divided into two groups: static
video summarization and dynamic video summarization [34]. Static video summarization
provides a static storyboard comprising of representative individual frames while dynamic
video summarization is a kind of video skimming, which is consist of attracted and brief
video shots. In this paper, we proposed a dynamic video summarization model.

Recently, many research work have been proposed to tackle the dynamic video sum-
marization task. At the very beginning, many methods were proposed based on low-level
features [18, 33]. Li et al. used the scale-invariant feature transform descriptor [20] to mea-
sure the similarity of two frames [18]. Then, they selected final summary based on the
improved maximal marginal relevance algorithm. Song et al. concatenated four classical
features: a pyramid of HoG [1], GIST [25], SIFT [20] and color histogram [41] to represent
the video frame [33]. They tried to generate the final summary by using title-based image
search results based on the fusion features. Later, some dynamic video summarization meth-
ods focused on mid-level semantic features [10, 21]. Ma et al. proposed an audio-visual
computational attention model for video summarization [21]. They constructed the user
attention model by integrating visual, audio and linguistic information of the video. Finally,
the video summarization result was generated based on a user attention curve. Gygli et al.
computed the interestingness score for each frame based on a combination of some features
such as spatial, temporal saliency and detecting faces [10]. Then the model selected an opti-
mal subset of video shots to create an informative summary based on the interestingness
scores. In recent years, many researchers started to develop dynamic video summarization
models relied on deep learning features [22, 43, 48]. Yao et al. proposed a pairwise rank-
ing two-stream deep model for video summarization [43]. They utilized the appearances of
video frames as spatial information and temporal dynamics across frames to represent each
video. At the end, they selected the highlight segments based on the highlight scores. Zhang
et al. devised their model based on long short-term memory (LSTM) architecture [48],
which was used to model the variable-range temporal dependency among video frames. The
experimental results showed that the proposed sequential structure was effective to create a
meaningful video summary. Moreover, Mahasseni et al. proposed [22] a generative adver-
sarial neural network (GAN) for video summarization. They conducted the experiments on
several benchmark datasets and the experimental results demonstrated the proposed method
achieved competitive performance in comparison to the state-of-the-art methods.

Deep learning networks have achieved great success in computer vision [5, 31, 50].
In this paper, we propose our dynamic video summarization model via a two-stream
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convolutional neural networks. The spatial-temporal architecture has been demonstrated to
be an effective network for action recognition task [31, 37] and video summarization task
[43]. In the spatial stream, the previous work tended to use RGB images to represent the
visual cues [31, 37, 43]. And in the temporal stream, most of the deep learning methods for
video content analysis used optical flow [31] or dense trajectories [37] to convey the motion
information. Besides the spatial and temporal information, eye movements directly tracked
from users are also useful for video related task. In fact, eye movement indicates a strong
sense of user’s interest and the importance of content [44]. It also reflexes how a person’s
attention is distributed in the spatial and temporal dimensions. Previous work have suc-
ceeded in demonstrating the effectiveness of gaze in many computer vision tasks, such
as images classification [16], activity recognition [49], object detection [44] and so on.
Although eye movement is thought as an important indicator of user’s interest, only a few
studies for video summarization tried to integrate this information [30, 42]. Xu et al. pro-
posed a gaze-enabled video summarization model for egocentric videos [42]. They first
divided the video into subshots. Then, they used aggregate fixation counts to measure the
attention score of each shot and extracted features around the gaze region by using R-
CNN for each subshot keyframe. Finally, they formulated the video summarization task
as a submodular function maximization problem by selecting an optimal subset to obtain
the final summary. They conducted the experiments on two egocentric datasets with gaze
data. The experimental results showed the proposed model could generate good summaries
for egocentric videos. Salehin et al. designed a framework based on the smooth pursuit to
detect important events for the input video [30]. They first proposed a method to distinguish
smooth pursuit from other types of eye movement: fixation and saccade. Later, they used
smooth pursuit information to calculate the important score for each frame. At the end, they
generated the final summaries based on these important scores. The experiments were con-
ducted on Office video dataset [8], which contains videos with camera movement/shaking
and illumination changes. They collected the eye tracker data for each video of this Office
dataset. The experimental results showed that the proposed method could achieve a satisfac-
tory summary result for a video with camera movement, low contrast, and significant illu-
mination changes. However, both of these existing approaches tended to directly utilize eye
movement information alone. They did not incorporate the gaze information with existing
sources.

Instead, we try to combine eye movement with video content by imitating the visual
processing in human cortex. We proposed a foveated two-stream ConvNets for video sum-
marization (FVS). In the spatial stream, instead of using RGB images directly, we construct
foveated images based on subjects’ gaze information as the input of the spatial channel for
the networks. In the temporal stream, we replace optical flow (or dense trajectories) with
motion vectors which can be extracted from the compressed video directly. To the best of
our knowledge, we are the first to integrate eye movement into deep learning architecture
for video summarization. We apply our proposed model on two dynamic video summariza-
tion benchmark datasets (SumMe [10] and TVSum [33]). The experimental results confirm
the effectiveness of the foveated images and motion vectors.

The rest of this paper is organized as follows. Section 2 briefly reviews the applications
of eye movement. In Section 3, we illustrate our proposed dynamic video summarization
model via two-stream architecture. In Section 4, we conduct several experiments on two
standard datasets. Finally, we will conclude our method and talk about the future work in
Section 5.
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2 Related work

Eye movement is a very important cue to indicate a person’s interest and purpose [2, 24,
44]. In other words, eye movement always shows how a person’s attention is distributed in
the spatial and temporal dimensions [44]. We can find out what is attracting people and the
relative importance of content by using gaze information.

Gaze information plays an important role in various tasks. Pereira et al. tried to analyze
the eye movement patterns to detect Alzheimer’s disease (AD) [27]. They found that AD
patients tended to have increased latencies in reflexive saccades and altered saccadic inhibi-
tion, which might suggest impairments in executive functioning. Holmberg et al. tried to use
eye movement data to find out the relation of children’s visual attention on advertisements
and advert saliency features [13]. They recorded the gaze data of children when they were
surfing their favorite websites. The experimental results showed that all low-level saliency
features such as motion, luminance and edge density had effects on children’ s visual atten-
tion, but these effects relied on children’ s individual level of gaze control. Meanwhile,
there are lots of gaze-related work on computer vision. Mishra et al. [23] proposed a novel
object segmentation approach based on gaze information. They utilized fixation points to
find an optimal closed contour for the object of interest. Their results showed that, with the
help of gaze data, the proposed method could make promising segmentation performances.
Recently, Karessli et al. tackled zero-shot image classification based on gaze information
[16]. They introduced three kinds of gaze embedding features, including gaze histograms,
gaze features with grid and gaze features with the sequence. They conducted their exper-
iments on two gaze-annotated image classification datasets. The results demonstrated that
human eye movement data was indeed class discriminative and could be a competitive
alternative to the expert annotation.

There is also another kind of gaze-enabled task. Instead of using eye movement informa-
tion alone, they tended to combine gaze information with images contents by constructing
foveated images [9, 36]. Foveated image has spatially varying resolution according to one
or more fixation points [39]. The gaze regions have the higher resolution correspond-
ing to the center of the eye’ retina (the fovea) while the rest of the image tend to be
blurred. Guenter et al. proposed a foveated 3D graphics model to accelerate graphics
computation [9]. They tracked the participant’ s gaze point and rendered three images
layers around it at progressively higher angular size but lower sampling rate. The experi-
ments showed that the proposed foveated rendering method improved graphics performance
and achieved competitive performance to standard rendering. Wang et al. introduced a
novel image quality measurement based on the foveated image in the wavelet transform
domain [36]. They suggested that the proposed foveated image quality metric could be
used for image coding and quality enhancement. They applied the proposed method for
a foveated image coding system. The results showed that it could have a good coding
performance.

3 Video summarization based on foveated two-stream ConvNets

As we know, video can be naturally separated into spatial and temporal parts [31]. The
spatial stream treats individual frame appearance as input, which carries information about
scenes and objects contained in the video. The temporal stream uses motion across the
frames as input, which conveys the movements of the objects and the camera. Thus, we de-
sign our video summarization model based on the two-stream architecture. Figure 1 outlines
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Fig. 1 Overview of the proposed foveated two-stream ConvNets for video summarization

the overview of our proposed model. In the learning stage, we first construct a two-class
classification model based on a foveated two-stream deep ConvNets. Then, the training
data with their corresponding user category labels are input to train a discriminative two-
stream ConvNets. Next, the combined features extracted from the ConvNets with their
corresponding summary probabilities are input to support vector regression (SVR) to train
an effective regression model. Finally, the regression model is used to predict the highlight
score/probability for each frame. In the inference stage, firstly, the learnt ConvNets are used
to extract features from the input test data. Secondly, the learnt SVR is utilized to predict
the highlight score for each frame based on the combined feature. Lastly, the final summary
is generated based on their predicted scores/probabilities.

In the following, we first describe how we construct foveated RGB images based on sub-
ject’s fixation points for the spatial stream. Next, we introduce how to build up multi-frame
motion vectors for the temporal stream. Finally, we will talk about the video summarization
generation based on our proposed foveated two-stream deep ConvNets. Besides, to distin-
guish two groups of subjects/users in this paper, we use different names to represent them.
As we know, the publishers of SumMe [10] and TVSum [33] datasets have provided mul-
tiple summaries for each video. In SumMe, Gygli et al. asked at least 15 participants to
summarize the video content for each video [10]. For each video in TVSum, Song et al.
asked 20 participants to generate their summarizations for the video [33]. To the persons
who provided their personal summaries for videos in SumMe and TVSum datasets, we call
them “users” in the following paragraphs and sections. We recruited several subjects to col-
lect their gaze data for each video in these standard datasets. We use “subjects” or “subject”
with their individual ID number to represent them.

3.1 Foveated images construction

In this paper, we propose to use foveated images to represent the visual appearance of
video frames as the input of the spatial stream. It is well known that people have noisy



Multimed Tools Appl

representations of spatial locations [4]. When the eye is observing a visual stimulus (such
as a still image or a video clip), only the fixation region is perceived by the human visual
system with maximum resolution, and the perceived resolution decreases progressively for
regions that are projected away from the fovea. Rovamo et al. suggested that the spatial
resolution at a certain eccentricity location could be predicted accurately by the following
equation σ 2

z (E) = c × (1+ 0.42× E). The standard deviation of a two-dimensional Gaus-
sian distribution centered at eccentricity E could also be predicted by the above formulation
[29]. E is the visual angle of the current location and the fixation point. As a matter of fact,
foveated imaging simulates the visual process of the optical system of the eye. The foveated
image has spatially various resolution according to one or more fixation points [39]. The
gaze regions have higher resolution corresponding to the center of the eye’ retina (the fovea)
while the rest of the image have relatively lower resolution. We believe that constructing
foveated RGB images based on subjects’ eye movements as the input of our model can well
convey the users’ interests to the current video.

The foveated image is generated by the convolution of the input video frame. The convo-
lutional kernel size depends on subjects’ eye movements. The foveated image can be seen as
a hierarchical blur version of the input video frame. We develop a foveated 2-D convolution
algorithm for the input video frame to generate the corresponding foveated image. Gener-
ally, the foveated image can be divided into two regions (gaze regions and non-gaze regions)
depending on their distances with the fixation points. In the following, we will describe
how we construct a foveated image for the input video frame. Firstly, we split the foveated
image into gaze regions and non-gaze regions. For each fixation point, we construct a 2-D
Gaussian distribution W ∼ N(1, 0) centered in it. Then we define the non-zero value areas
of these 2-D distributions as the gaze regions. The rest of areas are defined as non-gaze
regions. Secondly, we assign the convolutional result values to the foveated image. Actually,
each value is the convolutional result of the neighbor region (Z ∈ Z

s×s) around the corre-
sponding point in the input frame and a Gaussian kernel map (M ∈ R

s×s). For s and M , we
have different strategies for different regions. For the gaze regions, the convolution kernel
size s and the values of the kernel map M are equal to 1, which means that the gaze regions
keep the original values of the input video frame. For the non-gaze regions, we define an
adaptive kernel size s as follow:

s(d) = 2 × �σ(d)� − 1, (1)

σ(d) = c ×
(
1 + 0.42 × d

p

)
. (2)

where d is the distance between the current point (x, y) and the subjects’ gaze points
G(u, v). p is a constant value, representing pixel per degree in the experiment. The ker-
nel size s for the non-gaze region depends on the distance d of the current point and
the fixation points. This definition is based on the predicted spatial resolution formulation
proposed by Rovamo et al. [29]. We follow the existing work [35] to set the parameter
c = 0.08. For the Gaussian kernel map M in the non-gaze regions, we first construct a s × s

Gaussian distribution W ∼ N(σ(d), 0). Then M is equal to the normalized W . Finally,
each pixel value of the foveated image is equal to the sum of convolution results of the
Z and M .

The detailed procedure of the proposed foveated 2-D convolution algorithm is described
in Algorithm 1. On average, it costs about 0.12 ± 0.028 seconds to generate a foveated
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image (320×240). The experiment is conducted on a Linux server with 48 Intel(R) Xeon(R)
E5-2690 2.60GH CPUs and 256GB RAM.

Here, we also show two groups of sample foveated images in Fig. 2. The first group
is with gaze locations which are separated, and the second group is with gaze locations
which are gathered. Figure 2a and c show the original RGB along with three subjects’ gaze
points represented as different colored dots (red, green and blue). And Fig. 2b and d are
the foveated images generated based on Fig. 2a and c respectively. It is clear that the gaze
regions have higher resolution while the rest of the regions tend to be blurred. For example,
in Fig. 2a, three subjects are looking at three different locations and it results in three gaze
regions in Fig. 2b are relatively clear and the rest regions like the top-right mountain of
Fig. 2b are blurred. In addition, the resolutions of regions decrease when they are farther
away from fixation points. For example, in Fig. 2c, three subjects are all looking at the girl
in pink in the foreground. Thus, in its resulting foveated image Fig. 2d, the resolution of the
girl in light blue is higher than that of the boy in black because of the relatively near location
from the girl in pink (fixation points).



Multimed Tools Appl

Fig. 2 Samples of original RGB images (along with fixations points) and their corresponding foveated images

3.2 Multi-frame motion vectors construction

In this paper, we construct multi-frame motion vectors to express the movement information
for the temporal stream. Motion vectors are typically utilized by video compression to stor-
age the changes to an image from one frame to the next. It represents the movement of the
block, which is usually a 16× 16 pixel region. Motion vectors are a key element for motion
estimation. Although motion vectors are not as accurate as the optical flow, they have been
proved to contain useful movement information for action recognition [15]. Besides, as
motion vectors are already calculated and encoded in compressed videos, we can directly
extract them at very low computational cost.

In this section, we describe how to stack multiple motion vectors to express the move-
ment across several consecutive frames. We assume that the motion vectors of frame t is
denoted as Dt . It can be divided into horizontal and vertical components (Dx

t and Dy
t ). D

x
t

represents the displacement between the pairs of adjacent frames t and t + 1 in horizontal
dimension while Dy

t contains the movement in the vertical dimension. To convey the move-
ment across a sequence of video frames, we construct a 2L input component by stacking
motion vectors of the current frame t and next L − 1 consecutive frames (we call this input
multi-frame motion vectors). L denotes the staking length of the multi-frame motion vec-
tors. Let w and h be the width and height of the input video, then the multi-frame motion
vectors representation Tt ∈ R

w×h×2L for current frame t is constructed as follows:

{
Tt (2i − 1) = Dx

t+i−1
Tt (2i) = Dy

t+i−1
, 1 ≤ i ≤ L. (3)

In this equation, the horizontal and vertical components of Dt are stacked crossly. Finally,
Tt is input to the temporal stream for frame t .

3.3 Foveated two-stream ConvNets for video summarization

Figure 1 shows our proposed model for dynamic video summarization. Given the input
video, we first construct foveated images and multi-frame motion vectors for it. Then, the
foveated images are input to the spatial stream and multi-frame motion vectors are input
to the temporal stream to extract discriminative features for each frame. Each stream is
implemented using a deep ConvNet. In this paper, we prefer to use a deep ConvNet VGG-
16 [32]. The architecture of this ConvNet is C64−C64−C128−C128−C256−C256−
C256 − C512 − C512 − C512 − C512 − C512 − C512 − F4096 − F4096 − F2. It has
13 convolution layers (represented by C with the number of neurons) and 3 fully-connected
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layers (represented by F with the number of neurons). Figure 3 shows the structure of the
two-stream deep ConvNets. All convolutional layers are with stride 1. Also, considering
that the VGG-16 model has a fixed size input, we sample the multi-frame motion vectors
representation Tt to be a 224 × 224 × 2L sub-volume and input it to temporal steam.

In the learning stage, the training data with their corresponding labels are input to train
each stream. In the inference procedure, we fuse the output of the 15th layer in each stream
as the features for each video frame. We suppose the outputs of the 15th layer in the spatial
stream and temporal stream for frame t are denoted as f s

t and f
p
t . They are two 4,096-

dimensional vectors. Then the output feature ft for frame t is constructed based on these
two vectors:

ft = [
f s

t , f
p
t

]
(4)

The resulting 8,192-dimensional vector ft is then input to the subsequent SVR algorithm to
predict the highlight score of the current frame.

In this paper, we use the support vector regression (SVR) model proposed by Drucker et
al. [7] to predict the highlight score for each frame. SVR has been widely reported to achieve
good performances in many computer vision and machine learning problems. As shown in
Fig. 1, in the learning stage, the fused features with the corresponding average probability of
user selection (we can also call it as user score) are input to SVR. In the inference scheme,
the learnt SVR is used to predict the highlight score for each frame relied on its feature.
Finally, we construct the final video summary according to their predicted highlight scores.
The final summary is comprised of those video frames with highest K percentage of the
predicted highlight scores. For SVR, we use the standard toolbox LIBSVM [3]. For the
kernel function, we utilize the Radial Basis Function (RBF). In addition, a grid search is run
to find the optimal parameter settings.

4 Experiments

In this section, we conduct several experiments to demonstrate the effectiveness of our pro-
posed method. Firstly, we will introduce how we collect the gaze data, the evaluating metric
and our implementation details in Section 4.1. Secondly, some experiments conducted in
SumMe dataset will be illustrated in Section 4.2. The experiments include the consistency
of subjects’ eye movements, the comparison between our proposed model and several state-
of-the-art methods, the effectiveness comparison based on the collected gaze locations or
the locations predicted by an attention method, the visualization of our predicted summary

Fig. 3 The structure of the two-stream deep ConvNets. Each ConvNet has 13 convolutional layers and 3
fully-connected layers. All convolutional layers are with stride 1 and the ReLU activation function is not
shown for brevity
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results and the performance with different summary lengths on SumMe dataset. Finally, the
experimental results on another video summarization benchmark dataset TVSum are shown
in Section 4.3. Although Xu et al. [42] and Salehin et al. [30] have proposed dynamic video
summarization models based on gaze data, they conducted experiments on unpublished
datasets. We are not able to compare our proposed method with them.

4.1 Experimental setting

Gaze data collection The Gaze data was collected on two video summarization bench-
mark datasets: SumMe [10] and TVSum [33]. SumMe contains 25 videos and TVSum is
comprised of 50 videos. These videos were properly resized to provide a clear view for
observers. We asked participants to freely watch the entire video and muted the audio to
ensure that there was only visual stimuli. The visual stimuli was presented on a screen (res-
olution: 2560×1440, refresh rate: 60 Hz) and generated by Psychtoolbox-3 toolbox [17]
in Matlab on a MacBook Pro computer. Observers were stabilized by a chin and forehead
rest. They were also maintained a constant viewing distance of 57 cm, resulting in a dis-
play with a visual angle of 51.2◦ × 33.3◦. We collected the gaze data with a SR Research
EyeLink 1000 video-based eye tracker. Horizontal and vertical positions of the right eye
were recorded at 1000 Hz. The calibration and validation were conducted with the stan-
dard nine-point method included with the system. We used three participants (one male and
two females) on SumMe and two participants (two females) on TVSum in our task. All
observers had normal or corrected-to-normal vision.

Evaluation metric In our experiments, we compare automatic summarization (A) with
the human-created summaries (B) and report the F-measure score to measure the perfor-
mance of compared methods for evaluation. Many existing work on video summarization
utilized this metric to demonstrate their methods [10, 22, 33], which is defined as follows:

F = 2 × pr × re

pr + re
, (5)

re = #matched pairs

#f rames in B
× 100%, (6)

pr = #matched pairs

#f rames in A
× 100%. (7)

where re is the recall and pr is the precision. In our experiments, we report the mean F-
measure and the nearest-neighbor F-measure (NN-F-measure) by comparing the predicted
summaries with the user summaries. The mean F-measure is the average value of the F-
measures for all users. It is given by:

F̄ = 1

N

N∑
i=1

Fi (8)

where N denotes the number of users, and Fi is the F-measure for users i. The NN-F-
measure represents the maximal value of Fi , and it is given by:

Fmax = max
i

(Fi) (9)

This metric is used to evaluate the performance of the proposed method based on the most
similar summary from all users. We use the standard toolbox proposed by Gygli et al. [10] to
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evaluate our performance on SumMe and we utilize the evaluation code provided by Zhang
et al. [48] on TVSum dataset.

Implementation details We follow the existing work [22, 47, 48] to randomly select 80%
of the videos for training and utilize the rest of videos for testing in each dataset. For the final
summary, the statistic from Gygli et al. [10] showed that the length of the summarization
should be about 15% of the input video. Therefore, in most of our experiments, we set the
summary length K = 15. For the parameters in ConvNets, we follow the general setting in
[37] and we pre-train the ConvNets on the ImageNet dataset [5] to avoid the over-fitting.
Based on the gaze data collection setting, the pixel per degree p = 44 in (2). Our method
is implemented with Caffe [14] on the Tesla K80 GPU. We use the algorithm proposed by
Zhang et al. [46] to extract motion vectors of the input videos. To demonstrate the effective-
ness of motion vectors for video summarization, we compare the video summarization perfor-
mance of using motion vectors and optical flow. We select the widely used toolbox to obtain
optical flow [38, 45]. The stacking length L is set to 10 by following the existing work [31].

4.2 Video summarization on SumMe dataset

The SumMe dataset [10] contains 25 user videos depicting several events such as sports and
cooking. The length of videos varies from 1 to 7 minutes. Each video has at least 15 user
summary annotations as well as frame-level important scores. The annotation was collected
in the controlled environment. For a given video, the users were asked to generate a sum-
mary that comprises most of its meaningful content, in other words, that best summarizes
the input video. We find that users’ responses vary from each others’ even within the same
video. The diversity and variety of the video contents and the users’ responses make the
dataset a challenging benchmark for video summarization.

To verify the consistency of the gaze information of various subjects, we first compute
the distances of subjects’ gaze points and compare them with the random baseline. For the
random baseline, we calculate the distance between two random points in each frame. To
calculate the similarity of subjects’ eye movements, we compute the gaze-points distance of
each pair of subjects in each frame. And then we report the average distances of each pair
for each video. We resize the videos properly during the gaze data collection. The width of
each video is resized to 1920 pixels and the height is resized proportionately (ranges from
1080 to 1440 pixels). This experiment is conducted on resized videos. Figure 4 shows the

Fig. 4 The distance comparisons of three pairs of subjects’ gaze points and the random baseline in 25 videos
of SumMe
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compared results. It is obvious that the distance of each pair of subjects’ eye movements
is significantly smaller than the random baseline. In addition, the distance of each pair is
also quite similar to each other. These indicate that the subjects’ gaze information are quite
consistent. Specially, the broken line in blue locates lower than other cases. It shows that
the eye movements of the subject 1 is more similar to subject 2 than subject 3.

We also show the video summarization performances of using different subjects’ eye
movements on SumMe dataset in Table 1. Firstly, the performances of three individual sub-
jects are shown in the table. These three models generate foveated RGB image only based on
single subject’ s eye movement. Secondly, we provide a multiple subjects version of our pro-
posed models which utilized the combination fixation points of subject 1, subject 2 and sub-
ject 3 into the construction of the foveated video frames. We applied these models based on
two versions of our proposed method (FVS-FRGB and FVS-FRGB&MV). FVS-FRGB is
our proposed one-stream ConvNet for video summarization, which utilizes foveated images
as spatial stream input. FVS-FRGB&MV is our proposed two-stream ConvNets, which uses
foveated images as the input of spatial stream and multi-frame motion vectors as the input
of temporal stream. They are all evaluated on average mean F-measure (AMF) and average
NN-F-measure (ANF). From Table 1, the average values and the standard deviation values
(STD) of the performance among subject 1, subject 2 and subject 3 are given at the end of
the table. It is clear that the multiple subjects model nearly outperforms all individual subject
models as well as the average performances of them. In addition, the performances of the in-
dividual subject are quite consistent with each other and standard deviations are quite small.

Next, in order to evaluate the effectiveness of our proposed method, we compare our
proposed method with other existing methods. As SumMe is a widely used standard bench-
mark dataset for video summarization, many work [10, 11, 18, 22, 33, 47, 48] have been
validated in this dataset. We compare our method with static video summarization as well as
several state-of-the-art dynamic video summarization methods: Video Representation Clus-
tering based Video Summarization (VRCVS) [40], Creating Summaries from User Videos
(CSUV) [10], Video MMR [18], Exemplar-based Subset Selection (ESS) [47], Learning
Submodular Mixtures of Objectives (LSMO) [11], Summarizing Web Videos using Titles
(SWVT) [33], Video Summarization with Long Short-term Memory (dppLSTM) [48] and
Unsupervised Video Summarization with Adversarial LSTM Networks (SUM-GAN) [22].

Table 1 The performance comparisons of using different subjects’ gaze information. We have the eye
movement data of three subjects on SumMe. The table shows the performance of our proposed models
(FVS-FRGB and FVS-FRGB&MV) by using different subjects’ eye movements

Subject Method

FVS-FRGB FVS-FRGB&MV

AMF ANF AMF ANF

subject1 34.6% 53.7% 35.5% 55.0%

subject2 34.1% 53.9% 36.4% 57.3%

subject3 34.3% 56.1% 36.3% 56.5%

multiple 34.8% 55.5% 36.7% 57.7%

average 34.3% 54.6% 36.1% 56.3%

STD 0.21% 1.08% 0.39% 0.94%

The best performance is marked in bold
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VRCVS is a recent cluster-based static video summarization model which utilized a density-
based clustering algorithm to generate a static storyboard for the input video [40]. While the
rest of compared methods are all focused on dynamic video summarization task [10, 11, 18,
22, 33, 47, 48]. Basically, CSUV [10], Video MMR [18] and SWVT [33] are unsupervised
methods based on hand-craft features. Gygli et al. selected an optimal segment subset based
on low-, mid- and high-level visual features [10]. Li et al. proposed a dynamic video summa-
rization based on a classical algorithm of text summarization, Maximal Marginal Relevance,
which rewarded relevant keyframes and penalized redundant keyframes to generate the best
summary result for each video [18]. Song et al. solved video skimming task by using title-
based image search results based on standard image descriptors (color histograms, GIST
and SIFT) [33]. While ESS, LSMO, dppLSTM and SUM-GAN are supervised methods
based on deep learning features. Zhang et al. used human-created summaries to help the
subset selection based on deep features [47]. Gygli et al. represented video segment in term
of deep features trained on ImageNet to generate interesting and representative summary
[11]. The dppLSTM and SUM-GAN used more latest deep learning architectures to for-
mulate their methods. Zhang et al. proposed a supervised method based on long shot-term
memory (LSTM) [48]. Mahasseni et al. introduced a novel generative adversarial network
(GAN) consisting of the summarizer and discriminator for video summarization [22]. The
compared methods can also be divided into frame-level and shot-level. Wu et al. evaluated
the proposed method VRSCS on frame-level [40]. Gygli et al. provided the performance of
the proposed method CSUV on both frame-level and shot-level [10]. The rest of the com-
pared methods (Video MMR [18], SWVT [33], ESS [47], LSMO [11], dppLSTM [48], and
SUM-GAN [22]) were all evaluated on shot-level. For most of the compared methods, we
report the results published in their paper. Specifically, for dppLSTM [48], we calculate
the F-measure score by using the evaluation code and summary results provided by Zhang
et al. [48]. We report the best performance of their proposed method on SumMe dataset,
which utilized other datasets, i.e. TVSum [33] for training. For SUM-GAN [22], we show
the results of the supervised version, which also obtained the training data augmented with
videos from other datasets (such as TVSum [33]). We implement VRSCS method [40] and
report two versions of the summary results. For frame-based results of this static video sum-
marization approach, we simply regard the static summary (storyboard) generated by the
proposed method as the final summaries. For shot-based results, we first segment video into
shots by using superframe algorithm proposed by Gygli et al. [10] and then select the shots
which contain those frames in the storyboard as final selection results.

For the comparisons, we also provide different versions of our proposed methods based
on foveated two-stream ConvNets for video summarization (FVS). There are one-stream
deep architectures (FVS-OP, FVS-MV, FVS-RGB and FVS-FRGB) and two-stream deep
networks (FVS-RGB&MV and FVS-FRGB&MV). In detail, FVS-OP, FVS-MV, FVS-RGB
and FVS-FRGB indicate the methods that use optical flow, multi-frame motion vectors,
RGB images and foveated RGB images as the input of the one-stream ConvNet, respec-
tively. FVS-RGB&MV and FVS-FRGB&MV are models with two-stream learning struc-
ture. FVS-RGB&MV treats the RGB images as the input of the spatial stream and multi-
frame motion vectors as the input of the temporal stream. While FVS-FRGB&MV uses the
foveated RGB images as spatial stream input and multi-frame motion vectors as temporal
stream input. We report our results on two levels: frame-level and shot-level. For frame-level
version, we generate the final summary comprised of those video frames with highest 15
percentage of the predicted scores. As we discussed before, most of the compared existing
methods are evaluated on shot-level. For fair comparisons, we follow the existing work [22,
48] to split the video into disjoint intervals by using kernel temporal segmentation (KTS)
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[28]. Then, the final summary is comprising of those segments with highest predicted scores.
The predicted score of a segment is equal to the average score of the frames in that interval.
The total duration of the final summary segments is less than 15 percent of the length of
the input video. To make the total duration of keyshots be below 15 percent of the original
video, we also utilize the knapsack algorithm by following the existing work [10, 33, 48].

The comparison results are shown in Table 2 with the average mean F-measure (AMF)
and the average NN-F-measure (ANF). From Table 2, it is obvious that human annotations
are conducive to the performance of supervised methods, which allow most of them to
achieve higher F-measure score than those unsupervised methods. Since most of the com-
pared methods are based on shot-level, we report two versions of our proposed method on
Table 2. Focusing on shot-level methods, we find that all of our proposed methods (FVS-
MV, FVS-RGB, FVS-FRGB, FVS-RGB&MV and FVS-FRGB&MV) can generate better
summary than the compared static video summarization methods, state-of-the-art dynamic
video summarization methods, and even those deep learning based methods (dppLSTM and
SUM-GAN) using latest deep learning architectures with augmented data. All of our pro-
posed models have higher AMF and ANF than the compared methods, which demonstrates
the effectiveness of our proposed foveated two-stream ConvNets for video summarization.

In the comparison of our proposed methods, it is clear that our proposed two-stream
(FVS-RGB&MV and FVS-FRGB&MV) models gain higher F-measure score than those
one-stream models (FVS-OP, FVS-MV, FVS-RGB and FVS-FRGB), which verifies that
the essentials of two-stream architecture for video summarization. In the comparison of
two kinds of motion input, the AMF and ANF of FVS-MV significantly outperform FVS-
OP. We believe that motion vectors are more skilled at extracting those consistent motions
of the prominent object with sufficient level of amplitude, which might be able to arouse
strong emotional responses in viewers [6, 12], than optical flow. In the comparison of the

Table 2 The performance comparisons of our proposed methods with other models on SumMe dataset

Method Frame-level Shot-level

AMF ANF AMF ANF

Unsupervised methods Existing static methods VRCVS [40] 1.0% 0.5% 14.9% 40.4%

Existing dynamic methods CSUV [10] 23.4% ---- ---- 39.4%

Video MMR [18] ---- ---- ---- 26.6%

SWVT [33] ---- ---- 26.6% ----

Supervised methods ESS [47] ---- ---- ---- 40.9%

LSMO [11] ---- ---- ---- 39.7%

dppLSTM [48] ---- ---- 17.72% 42.9%

SUM-GANsup [22] ---- ---- ---- 43.6%

Proposed methods FVS-OP 23.0% 39.9% 21.2% 47.6%

FVS-MV 35.2% 53.8% 27.6% 55.3%

FVS-RGB 32.0% 53.4% 25.2% 50.8%

FVS-FRGB 34.8% 55.5% 27.2% 49.9%

FVS-RGB&MV 35.4% 56.3% 26.1% 54.9%

FVS-FRGB&MV 36.7% 57.7% 27.0% 55.5%

’----’ denotes that the result is not reported in existing papers

The best performance is marked in bold
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RGB image (FVS-RGB) and the foveated RGB image (FVS-FRGB), the results show that
FVS-FRGB outperforms FVS-RGB in most cases which confirms the importance of gaze
information for video summarization. For those two-stream architectures, the model which
utilizes the foveated images as spatial stream input shows better performance than the model
using the original RGB frames as input. We believe that foveated image provides user inter-
esting regions for ConvNets. This enables the ConvNets to generate discriminative features,
which are more related to users’ scores.

We also provide the effectiveness comparison based on the collected gaze locations or
the locations predicted by an attention method [51] on SumMe dataset. Zhou et al. pro-
posed a class activation mapping technique (CAM) which was able to expose the implicit
attention of convolutional neural networks on the image and highlight the most informa-
tive image regions [51]. In the experiment, we compare the summarized performances of
two versions of FVB-FRGB on SumMe dataset. One utilizes the collected gaze locations to
generate foveated images (denoted as FVB-FRGB) while the other uses highlighted regions
detected by CAM to construct foveated images (denoted as FVB-FRGB-AttentionModel).
The detailed processing is described as follow. Firstly, we utilize the class activation map-
ping technique proposed by Zhou et al. [51] to extract the attention regions of each video
frame, which results in an activation map. The higher values of the activation map corre-
spond to the regions which need to pay more attention to. Next, we extract three points of
each activation map which have highest values to replace the gaze points of three subjects
we collected in each video frame. Finally, each foveated image is generated based on pre-
vious three points extracted by CAM. The remaining processing is as same as the original
FVB-FRGB. The experimental results are shown in Table 3. From the table, we can see that
our proposed FVS-FRGB which generates foveated images based on locations from the real
gaze data outperforms FVS-FRGB-AttentionModel which generates foveated images based
on locations predicted by an attention method [51] by about 2%. Compared with the sum-
marized results in Table 2, FVS-FRGB-AttentionModel is still able to exceed all compared
methods, even though the real gaze locations are replaced by the predicted locations gener-
ated by an attention method. It is also proved the feasibility of integrating attention method
into our proposed model in the future.

In Fig. 5, we visualize a sample of the predicted results. The displayed video is mainly
about kids playing in the leaves around the house. At the beginning, three kids were on the
top of the hill and then they jumped to the leaves. They gathered around and started a fight
by using leaves as the weapon. After a while, the viewpoint was changed to catch the kids
running around the house. Finally, they were back to the leaves to continue the battle. The
first row of Fig. 5 shows the average possibility of each frame whether it would be the final
summary based on all users’ selections. We can also regard the probability as the score for
each video frame. In the following three rows, we provide the predicted scores generated by
our proposed methods: FVS-RGB&MV, FVS-FRGB&MV-shot and FVS-FRGB&MV. The

Table 3 The effectiveness comparison based on the collected gaze locations or the locations predicted by an
attention method on SumMe dataset

Method Frame-level Shot-level

AMF ANF AMF ANF

FVS-FRGB 34.8% 55.5% 27.2% 49.9%
FVS-FRGB-AttentionModel 33.7% 53.8% 24.5% 47.1%

The best performance is marked in bold
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Fig. 5 A sample of the predicted results on video “Kids playing in the leaves” of SumMe database

fifth row describes the corresponding video content of the selected intervals. Finally, the last
row indicates the subjects’ fixation points on the video frames with each color representing
a subject. From the example, it is clear that our proposed model can effectively extract the
main content of the given video. It is able to capture the important segments about the kids
playing in the leaves, which are similar with all the users’ selections (roughly from 100 to
650 frame). It could also succeed in detecting several peaks of the average score of this
video such as the interval begun at 2150 frame and ended at 2200 frame. In addition, by
observing the frame-level performances of our proposed models in Table 2, we could find
that even we do not segment video into shots in advance, our frame-level proposed methods
are still capable to achieve competitive performance with those shot-level state-of-the-art
methods. Interestingly, our frame-level based models gain higher F-measure score than our
shot-level models. We believe that the shot segmentation algorithm restricts the structure of
final summary. From Fig. 5, in the comparison of the third and fourth rows, our proposed
foveated two-stream architecture not only can extract representative and interesting content
of the input video, but can also learn the intrinsic connection of video frames, which help
frame-level models achieve higher performance. Finally, by exploring the subjects’ fixation
points in the final summary, we find that the more aggregative the positions of the gazing
point on a frame are, the more likely that the frame tends to be selected as final summary.

We also explore the influence of different summary lengths K on our proposed models.
According to the statistics collected by Gygli et al. [10], the length of the final summary
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tends to be 15 percent of the original video. In our models, we set K = 15 to gener-
ate video summary. Here, we provide the performance with different summary lengths K

in Fig. 6. The comparison contains four methods, including the shot version of the static
summarization method VRCVS-shot [40], our proposed one-stream architecture FVS-OP
and our proposed two-stream models: FVS-RGB&MV and FVS-FRGB&MV. Figure 6a
describes the average mean-F-measure, while Fig. 6b shows the average NN-F-measure on
K = 5, 10, 15, 20, 25. It is clear that the two-stream method FVS-FRGB&MV, which uti-
lizes foveated RGB image as the spatial steam input and multi-frame motion vectors as the
temporal stream input, exceeds other models in all compared values of summary length. It
achieves the best average mean-F-measure and the average NN-F measure when K = 15.

4.3 Video summarization on TVSum dataset

The TVSum dataset [33] consists of 50 videos collected from YouTube. These videos are
from 10 categories (five videos per category), such as parade, bee keeping and grooming an
animal. All categories are defined in the TRECVidMultimedia Event Detection (MED). The
video length varies from 1 to 11 minutes. The dataset also provides 20 human annotations in
term of shot-level important scores of 1 (not important) to 5 (very important) for each video.
Each shot is with a uniform length of 2 seconds. Therefore, for SVR stage in our proposed
method, we just uniformly subsample all the videos in TVSum to 2 frames per second by
following the setting of previous work [48] and then each interval could have a shot-level
important score itself for training. Finally, each test frame in the same shot would have the
equal predicted score after SVR process.

In Fig. 7, we show a sample video with average important scores of TVSum dataset.
The video captured the Chinese New Year parade in Chinatown. At the beginning, the title
of this video appeared. Most of the users agreed this interval should have relatively higher
important scores. Then the video started to record a man’ s talking. The parade began at
1750th frame. When the dancing lion appeared in the video, the average important scores
were relatively high. At the end of the parade, users showed less interest in the video content.
Finally, the video recorded the man talking about the parade.

Next, we compare our proposed methods with state-of-the-art approaches. Table 4 shows
the comparison results. The compared methods include the static video summarization
model VRSCS [40] and three dynamic video summarization models SWVT [33], dppLSTM

FVS-RGB&MV

FVS-FRGB&MV

FVS-OP

VRCVS-shot

K

Average Mean-F-measure

20%

30%

40%

Average NN-F-measure

35%

45%

55%

65% FVS-RGB&MV

FVS-FRGB&MV

FVS-OP

VRCVS-shot

K

Fig. 6 The performance comparison vs. K on SumMe dataset. (a): The average mean-F-measure with
different summary lengths K . (b): The average NN-F-measure with different summary lengths K
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Fig. 7 A sample video “Chinatown parade” (video id: fWutDQy1nnY) with average important scores of
TVSum database

[48] and SUM-GANsup [22]. VRSCS and SWVT are unsupervised methods based on hand-
craft features while dppLSTM and SUM-GAN are supervised methods based on advanced
deep learning models LSTM and GAN. Here, we report the best performances of dppLSTM
and SUM-GAN in their paper, which augmented the training data using other video sum-
marization dataset (such as SumMe). As most of the compared methods (SWVT, dppLSTM
and SUM-GAN) were evaluated on shot-level, we provide VRSCS-shot with the same set-
ting in SumMe. We also provide several versions of our proposed method evaluated on
shot-level. FVS-MV, FVS-RGB and FVS-FRGB are one-stream architectures which uti-
lizes multi-frame motion vectors, RGB images and foveated images as input respectively.
FVS-RGB&MV and FVS-FRGB&MV are based on two-stream deep ConvNets. FVS-
RGB&MV uses RGB images as the input of spatial stream and multi-frame motion vectors
as the input of temporal stream. While FVS-FRGB&MV uses foveated RGB images as the
spatial stream input and multi-frame motion vectors as the temporal stream input.

From Table 4, we can find that the dynamic video summarization approaches achieve
better performance than the static video summarization method on TVSum dataset. The
deep learning based methods outperform the hand-crafted based methods. It is also clear that
our proposed models gain significantly better summary performances than the compared
models.

Table 4 The performance comparisons using the average F-measure on TVSum dataset

Method AMF ANF

Unsupervised methods Existing static methods VRCVS-shot [40] 24.7% 34.0%

Existing dynamic methods SWVT [33] 50.0% ----

Supervised methods dppLSTM [48] 58.7% 78.6%

SUM-GANsup [22] 61.2% ----

Proposed methods FVS-MV 58.2% 81.0%

FVS-RGB 62.0% 83.9%

FVS-FRGB 62.2% 83.5%

FVS-RGB&MV 62.8% 83.8%

FVS-FRGB&MV 62.2% 83.5%

‘----’ denotes that the result is not reported in existing papers

The best performance is marked in bold



Multimed Tools Appl

5 Conclusions and discussion

In this paper, we propose a novel dynamic video summarization model based on foveated
two-stream deep ConvNets. In the spatial stream, the foveated images are constructed based
on subjects’ fixation points to convey the visual appearance of the video. In the temporal
stream, multi-frame motion vectors are built up to extract movement information of the
input video.

In empirical validation, we evaluate our proposed method on two video summarization
benchmark datasets. The experimental results demonstrate that the proposed methods can
generate better video summary in comparison with the baseline methods as well as the
state-of-the-art models. Meanwhile, extensive experimental results also show that the effec-
tiveness of using foveated image and motion vectors. With the help of gaze information,
our proposed foveated images achieve better performance than the original RGB images.
Multi-frame motion vectors outperform the optical flow in video summarization task.

Although our model with an additional information: the eye tracking information, to
obtain better summarized results, the subjects who were tracked eye movements were not
the users who selected video summaries. We also find different subjects’ eye movements
are similar with each other. It means that eye movement of any subject could be helpful to
generate a good video summary. On the other hand, eye movements become more and more
convenient to obtain in recent years. Many portable equipments are produced. Papoutsaki
et al. even proposed a webcam eye tracking method on the browser [26]. Moreover, some
existing work seek to predict eye movements on multimedia data and they achieve not bad
performances [19, 49]. In future, we will investigate how to integrate eye movement pre-
diction stage into our model. Furthermore, we will propose an end to end architecture for
video summarization task.
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