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a b s t r a c t 

Video summarization has unprecedented importance to help us overview current ever-growing amount 

of video collections. In this paper, we propose a novel dynamic video summarization model based on 

deep learning architecture. We are the first to solve the imbalanced class distribution problem in video 

summarization. The over-sampling algorithm is used to balance the class distribution on training data. 

The novel two-stream deep architecture with the cost-sensitive learning is proposed to handle the class 

imbalance problem in feature learning. In the spatial stream, RGB images are used to represent the ap- 

pearance of video frames, and in the temporal stream, multi-frame motion vectors with deep learning 

framework is firstly introduced to represent and extract temporal information of the input video. The 

proposed method is evaluated on two standard video summarization datasets and a standard emotional 

dataset. Empirical validations for video summarization demonstrate that our model achieves performance 

improvement over the existing and state-of-the-art methods. Moreover, the proposed method is able to 

highlight the video content with the active level of arousal in affective computing task. In addition, the 

proposed frame-based model has another advantage. It can automatically preserve the connection be- 

tween consecutive frames. Although the summary is constructed based on the frame level, the final sum- 

mary is comprised of informative and continuous segments instead of individual separate frames. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the explosive growth of video data, there is increasing

need to browse video content quickly [1–3] . Video summarization,

which captures the attractive and representative information of the

video, is an effective way to overview a large collection of videos

[4] . Generally, video summarization can be divided into two cate-

gories: static video summarization and dynamic video summariza-

tion [4] . Static video summarization selects some important indi-

vidual frames of the initial video as the final summary [5] . On

the other hand, dynamic video summarization provides a more

friendly browsing service for viewers [6,7] . It is comprised of in-

formative and representative segments that keep motion informa-

tion. Thus, in order to generate a good dynamic summary, visual

appearance as well as temporal clue of the video should be well

considered. In this paper, we propose a novel method for dynamic

video summarization by making good use of temporal and spatial

information of the video. 
∗ Corresponding author at: College of Computer Science and Software Engineer- 

ing, Shenzhen University, Shenzhen, China. 

E-mail addresses: csshzhong@szu.edu.cn (S.-h. Zhong), 
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Previous work for dynamic video summarization have been

tudied in various perspectives. Chu et al. proposed a novel method

o summarize a video by finding the shots that most frequently

ppeared among videos with the same topic [8] . They proposed

 maximal biclique finding algorithm to find sparsely co-occurring

atterns among thousands of irrelevant shots. Xu et al. used sub-

odular maximization method based on gaze information to solve

he summary problem [9] . They found that the gaze information

f the wearers provided their intent and significantly helped the

ideo summarization task. Zhang et al. tried to transfer summary

tructures from human-created summaries to unseen test videos

1] . They used semantic information about the video’s genre to

uide the transfer processing. Meng et al. formulated the video

ummarization task as a multi-view representative selection prob-

em [10] . They selected visual elements that were representative of

 video consistently across different feature modalities as the video

ummary by using the multi-view sparse dictionary selection with

entroid co-regularization method. 

Deep learning has achieved great success on computer vision

nd artificial intelligence [11–15] . Recent work on dynamic video

ummarization are also benefited from the progress in deep learn-

ng techniques. Gygli et al. used a supervised approach to learn

he importance of the global characteristics in a summary by ex-

racting deep features of video frames [16] . Yao et al. proposed a

https://doi.org/10.1016/j.neucom.2018.12.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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airwise deep ranking model that employed two-stream deep

onvolutional neural networks to generate the summarization of

ideos [17] . The final summary was comprised of those video seg-

ents with higher ranking scores. Zhou et al. proposed a video

ummarization method based on deep reinforcement learning [18] .

he video summarization task was formulated as a sequential

ecision-making process and they developed a deep summariza-

ion network (DSN) to predict a probability for each video frame.

he final summary was generated based on the probability, which

ndicated how likely a frame was selected. 

In light of the recent successes of the deep learning on video

ontent analysis, we propose our dynamic video summarization

odel based on a two-stream deep learning architecture. The two-

tream network has been proved to be an effective architecture to

ecognize human actions [19,20] . However, we are aware of only

ne existing work constructed video summarization model via the

wo-stream network [17] . In the spatial stream, we follow these

xisting work [17,19,20] to use the RGB images to represent the

ppearance. In the temporal stream, most currently deep learn-

ng methods for video analysis used optical flow [19] , dense tra-

ectories [17] to represent the motion information. Although these

echniques can detect and extract movement precisely, the tem-

oral information is not exactly equal to the amplitude of all the

ovements between adjacent frames. In fact, some subtle changes

etected by optical flow are often resulted from the illumination

hange or unsteady small-disturbance in the environment [21] .

hile precise movements obtained by optical flow techniques are

seful for recognition of subtle actions, they may not provide reli-

ble information for video summarization. In video summarization

ask, we believe that only the consistent motion of the prominent

bject with sufficient level of amplitude should be popped out as

he temporal information for consideration of summarization. As

he independent calculation in each frame pair has a high compu-

ational cost, optical flow and dense trajectory methods are often

omputationally expensive. Based on these considerations, we use

ulti-frame motion vectors (MV) with deep learning framework

o represent and extract the motion information for video sum-

arization. Motion vectors, which represent movement patterns of

ifferent image blocks, can be obtained from most of video files

irectly. It has been successfully utilized on action recognition task

22,23] . 

Video summarization is naturally a classification problem. One

f the most important aims in video summarization task is to

redict whether a frame should be in the final summary or not.

lthough recently, some deep learning models are proposed for

ideo summarization task [16,17,24,25] . However, in these existing

ork, one important character of video summarization has never

een seriously considered. That is, human beings tend to select

 small subset of videos to be the summarization. This means

hat video summarization consists of generating a short summary

f a video, which can either be a static summary or a dynamic

ummary [26] . In other words, the number of frames in the fi-

al summary is much less than the remaining frames. This charac-

er is recognized as the class imbalance problem [27] . Via check-

ng all the public benchmark datasets for video summarization,

t is found that no matter whether they are proposed for static

r dynamic video summarization, all of them are imbalanced, as

 matter of fact. Fig. 1 shows the average percentage of users

elected summaries in 25 videos of the standard video summa-

ization dataset SumMe [28] . The blue bar shows the proportion

f the number of final summary in the whole video length, and

sers tend to take about 13% of the whole video as the video

ummary. If the class comprising the frames from the summary

s treated as the positive class, and the class containing the re-

aining frames is thought of the negative class, then the data

n these two categories are not balanced. This problem can be
ecognized as the imbalanced class distribution problem in ma-

hine learning and data mining, which causes seriously negative

ffects on the performance of learning methods. While there ex-

sts some work on class imbalance problem with deep learning

etworks [29–32] , we are the first trying to solve this commonly

xisting problem in video summarization. In our proposed ap-

roach, we introduce a novel two-stream deep learning architec-

ure with the cost-sensitive learning to handle the class imbalance

roblem. 

The rest of this paper is organized as follows. Section 2 briefly

eviews the representative work on imbalanced class distribution

roblem. In Section 3 , we propose a novel framework and underly-

ng algorithm in detail. In Section 4 , we provide a series of exper-

ments to validate the proposed method on standard datasets, and

nally the conclusions are drawn in Section 5 . 

. Related work 

The class imbalance problem has been recognized as crucial

n machine learning and data mining because such a problem is

ncountered in a large number of domains [31] . In classification,

hen the distribution of the training data among classes is un-

ven, the majority classes generally dominate the learning algo-

ithm, whilst it makes the data from the minority classes difficult

o be recognized [32] . Several existing research work focused on

he class imbalance problem with deep learning networks [29–33] ,

nd they tried to solve the presence of underrepresented data and

evere class distribution skews to improve the performance of the

roposed algorithm [27] . 

The existing methods in tackling the class imbalance prob-

em can be mainly divided into two groups: data resampling

29,31,34,35] and cost-sensitive learning [30,33] . The former group

eeks to change the training data distribution to learn good clas-

ifiers for the majority and minority classes, usually by under-

ampling and over-sampling techniques. The cost-sensitive learning

perates at the algorithm level by adjusting misclassification costs

or the majority and minority classes. 

On the one hand, many research work tried to use data re-

ampling technique to solve class imbalance problem [29,34,35] .

hawla et al. introduced an over-sampling method (SMOTE) which

nvolved creating synthetic minority class examples for class im-

alance problem [34] . They showed that a combination of their

roposed method of over-sampling the minority class and under-

ampling the majority class could achieve better classifier perfor-

ance than only under-sampling the majority class or varying the

oss ratios in Ripper or class priors in Naive Bayes. He et al. pre-

ented a novel adaptive synthetic sampling approach (ADASYN) for

earning from imbalanced data sets [35] . They used a weighted dis-

ribution for different minority class examples according to their

evel of difficulty in learning. Jeatrakul et al. combined the syn-

hetic minority over-sampling technique (SMOTE) and complemen-

ary neural network (CMTNN) together to handle the problem

f classifying imbalanced data [29] . They compared the proposed

ethod with several classical classification algorithms and the ex-

erimental results showed that the combined method could im-

rove the performance of the class imbalance problem. 

On the other hand, other existing work focus on cost-sensitive

earning [30,33] . Shen et al. trained a cost-sensitive deep neu-

al network to jointly optimize the class dependent costs and

he neural network parameters. Specifically, a new loss function,

amed positive-sharing loss, in each subclass shared the loss for

he whole positive class, was proposed to learn the parameters

30] . Khan et al. proposed a cost-sensitive (CoSen) deep neural

etwork to automatically learn robust feature representations for

oth the majority and minority classes [33] . The proposed method

as applicable to both binary and multiclass problems without any
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Fig. 1. The average percentage of users selected summaries in 25 videos of SumMe datasets. 
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Fig. 2. The two-stream framework for video summarization. 
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modification. They conducted experiments on six image classifica-

tion datasets and the results showed that the proposed method

significantly outperformed the baselines. 

Besides, there are some existing work trying to combine the

data resampling technique and cost-sensitive method to enhance

deep feature representations [31,32] . In 2006, Zhou et al. empiri-

cally studied the effect of data resampling in training cost-sensitive

neural networks [31] . In 2016, Huang et al. investigated the combi-

nation of the data resampling technique and cost-sensitive method

in face attribute classification task and edge detection task [32] .

The representation learned by their approach showed significant

improvements over previous methods on vision classification tasks

that exhibited imbalanced class distribution. 

3. Imbalanced video summarization 

In this paper, we propose a novel dynamic video summariza-

tion method based on a two-stream deep learning architecture.

Fig. 2 shows a visual scheme of the proposed video summariza-

tion via spatio-temporal deep learning model (VSST). Besides the

summary results selected by each subject as the ground truth for

classification, most of the datasets also provide user scores for

each frame or each shot. One kind of user score is the average

user selection probability [28] . Another is the score directly de-
ned by subjects [36] . To fully exploit these two kinds of informa-

ion, our learning model contains the classification objective func-

ion and regression objective function. In the learning scheme, we

rst construct a two-class classification model based on spatio-

emporal deep learning architecture. The over-sampling method is

onducted to handle the imbalanced class distribution problem in

raining data of the video summarization task. New balanced data

ith their corresponding summary category labels are then input

o train a cost-sensitive two-stream deep network to extract the

eatures with better discriminative ability. Then, these features

ith their corresponding summary probabilities are fused together

s the input of support vector regression (SVR) to train an effec-

ive regression model and predict the highlight probability/score

or each frame. In the inference scheme, the learnt VGG-16 mod-

ls are used to extract features from the input data, and the learnt

VR is utilized to predict the highlight score for each frame based

n the combined feature. Finally, we select the frames to construct

he final video summary according to their predicted probabili-

ies/scores. 

In the following, we first describe how the over-sampling algo-

ithm works for the class imbalance problem in video summariza-

ion. We then introduce the two-stream deep learning architecture

ith cost-sensitive learning, and finally, we briefly describe the
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VR-based highlight prediction to complete our proposed deep-

earning based dynamic video summarization. 

.1. Over-sampling to balance class distribution 

Over-sampling is an effective method to address the class im-

alance problem. This technique changes the training data distri-

ution such that the costs of the examples are conveyed by the

ppearance of the examples [31] . In simple words, over-sampling

esamples the minority class until it has as many instances as the

ajority class [31] . There are many effective over-sampling meth-

ds such as SMOTE [34] and ADASYN [35] . In our paper, owing to

he lower computational cost, we simply utilize data augmentation

echnique [20] for over-sampling. 

Video summarization can be formulated as a two-class task.

he class comprising the frames from the summary is the minority

lass and the class containing the remaining frames is the majority

lass. Let N α be the number of training data in the majority class

nd N β be the number of training data in the minority class. In

he video summarization task, N β is less than N α . After the over-

ampling stage, the minority class will have N 

∗
β

training data, and

t makes N 

∗
β

= N α . 

The detailed procedure of the over-sampling algorithm for a

ideo is described in Algorithm 1 . Specially, we use a corner-

ropping strategy [20] to create the cropped version of original

raining samples. 

.2. Two-stream deep ConvNets for imbalanced feature learning 

As shown in Fig. 2 , our proposed method includes two-stream

eep ConvNets to extract spatial and temporal information for

ideos. 

In each stream, VGG-16 [37] is exploited to extract effective f ea-

ures for video frames. The architecture of this convolutional neu-

al network is C64 − C64 − C128 − C128 − C256 − C256 − C256 −
512 − C512 − C512 − C512 − C512 − C512 − F 4096 − F 4096 − F 2 , 

hich contains thirteen convolution layers (denoted by C with the

umber of neurons) and three fully-connected layers (denoted by

 with the number of neurons). 
lgorithm 1 Over-sampling algorithm with the corner-cropping 

trategy for a video. 

nput: 

The original set contains all video frames from the input video, 

S; 

utput: 

The balanced set for the input video, S ∗; 

1: Split S into S α and S β . S α contains the majority class video 

frames while S β contains the minority class video frames; 

2: Calculate n α and n β . n α and n β are the number of video frames 

in S α and S β ; 

3: Let n ∗
β

= n β ; 

4: Put all original training examples ( S) in S ∗. 

5: while n ∗
β

< n α do 

6: for each video frame s i in S β do 

7: Generate a cropped image from s i using corner-cropping 

strategy, and put them into S ∗. 

8: n ∗
β

= n ∗
β

+ 1 . 

9: if n ∗
β

== n α then 

10: break; 

11: end if 

12: end for 

13: end while 

14: return S ∗; 
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In the learning procedure, the balanced video data with their

orresponding category labels are input to train each stream. In

he spatial stream, we follow the existing work to use the RGB im-

ge from each frame as the input. In the temporal stream, different

rom existing methods in extracting optical flow or dense trajecto-

ies, we use the multi-frame motion vectors between frames as the

nput to convey the temporal dynamics. In the inference stage, the

utput of second fully-connected layer in each stream generates a

,096-dimensional vector. The resulting two 4096-dimensional rep-

esentations of each video frame are fused together to form the in-

ut to the subsequent support vector regression algorithm to pre-

ict the video summary score of the current frame. 

In this paper, we propose to use multi-frame motion vectors

s the input of the temporal stream to convey the movement of

bjects (or scenes) across frames. Motion vectors, which represent

ovement patterns of different image blocks, can be obtained from

ost of video files directly. We assume that the motion vectors of

rame t are denoted as M t . A multi-frame motion vectors input can

e seen as a set of displacement vector fields M t between the pairs

f consecutive frames t and t + 1 . Formula (1) shows the construc-

ion of multi-frame motion vectors T t ∈ R 

w ×h ×2 L for frame t . In this

quation, M t denotes the motion vectors of frame t . M 

x 
t and M 

y 
t are

he horizontal and vertical components of M t . To represent the mo-

ion across a sequence of frames, we stack these two components

rossly of L consecutive frames as formula (1) to form a total of 2 L

nput channels. L is the stacking length. 

T t ( 2 k − 1 ) = M 

x 
t+ k −1 

T t ( 2 k ) = M 

y 

t+ k −1 

, 1 ≤ k ≤ L (1) 

Considering that the VGG-16 ConvNet has a fixed size input, we

ample T t to be a 224 × 224 × 2 L sub-volume and treat it as the

nput of temporal steam. 

The cost-sensitive learning is proposed to handle the class im-

alance problem in feature learning. It directly operates at the al-

orithm level by adjusting misclassification costs for the majority

nd minority classes. In the following, we describe how we define

he learning objectives in our model. 

Given a training set which contains m sample: { x (i ) , y (i ) } m 

i =1 
,

here x ( i ) is the i th sample and y (i ) ∈ { 0 , . . . , k, k + 1 , . . . , K} is its

lass label. K + 1 is the number of classes in this dataset. Suppose

 α denotes the majority set and S β denotes the minority set. If

 

( i ) ≤ k , then x ( i ) is a majority sample, else if y ( i ) > k , then x ( i ) is a

inority sample. The probability that the label of the x ( i ) is equal

o j can be given by: 

 

(i ) 
j 

= 

exp (a (i ) 
j 

) ∑ K 
l=0 exp (a (i ) 

l 
) 

(2) 

here a (i ) 
j 

is the output of the unit j in the last layer of the

ully-connected sub-networks for x ( i ) . The output of the last fully-

onnected layer is then fed into a ( K + 1 )-way softmax which aims

o minimize the following loss function: 

 = − 1 

m 

[ 

m ∑ 

i =1 

K ∑ 

j=0 

1 (y (i ) = j) log P (i ) 
j 

] 

(3) 

here 1 ( • ) is the indicator function. In the case of the standard

oftmax loss function, it tries to penalize the classification error

or each class equally. In video summarization task, to predict the

abel of a positive class (minority class) sample to be negative is a

ore critical error than the opposite case. Thus, our new loss func-

ion assigns higher misclassification costs to the cases that predict

 minority class to be a majority class. Further, this setting is con-

istent with the construction of the loss function in cost-sensitive

earning for imbalanced data. To counter the adverse effects of
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imbalanced data, cost-sensitive learning is often applied, which as-

signs higher misclassification costs to the minority class than to

the majority [30,32,33] . Correspondingly, a novel loss function is

defined as follows: 

J ∗ = − 1 
m 

[
m ∑ 

i =1 

k ∑ 

j=0 

(
1 (y (i ) = j) log P (i ) 

j 

)]

− λ
m 

[
m ∑ 

i =1 

K ∑ 

j= k +1 

(
1 (y (i ) = j) log P (i ) 

j 

)] (4)

where λ is the misclassification cost for the minority classes, and

it is greater than 1. With this new loss function, we can assign

higher misclassification costs to the cases that predict the label of

a minority sample to be a majority label. 

3.3. Highlight prediction via support vector regression 

A version of support vector machine for regression was pro-

posed by Drucker et al. [38] . This method is called support vec-

tor regression (SVR), which has been widely reported to achieve

good performances in many computer vision and machine learn-

ing problems. 

In this paper, SVR algorithm is constructed to predict the high-

light value for each video frame. In the learning scheme, as shown

in Fig. 2 , the features of two-stream ConvNets with the corre-

sponding average user selection probability (we can also call it

as user score) are combined together as the input of SVR. In the

inference scheme, the learnt SVR is used to predict the probabil-

ity/score for each frame based on its feature. As a result, we select

the frames to construct the final video summary according to their

predicted probabilities/scores, and the final summary is comprised

of those video frames with highest M percentage of the predicted

probabilities/scores. For SVR, we use the standard toolbox LIBSVM

[39] . The Radial Basis Function (RBF) is selected as the kernel func-

tion, and a grid search is run to find the optimal parameter set-

tings. 

4. Experiments 

In this section, we first describe the experimental setting we

utilize for the evaluations. Secondly, we compare the video sum-

marization results obtained by our method with several state-of-

the-art methods on three standard datasets: the SumMe dataset

[28] , the TVsum dataset [36] and the Continuous LIRIS-ACCEDE

dataset [40] . The comparison results on each dataset are shown

separately in Sections 4.2 –4.4 . In Section 4.2 , we step by step

evaluate two key stages of our proposed method on the SumMe

dataset. We firstly provide the classification accuracy of our pro-

posed imbalanced two-stream network, and then we visualize the

video summary generated by our VSST approach. Next, we in-

vestigate the influence of different summary length M on the

summarization results and the distribution of user summaries. Fi-

nally, we compare the efficiency of the motion vectors and optical

flow on feature extraction. In Section 4.3 , we evaluate our pro-

posed method on a category-based video summarization bench-

mark dataset. We compare our results with two state-of-the-

art dynamic video summarization models. The comparison results

demonstrate that our proposed method can generate similar video

summaries to subjects’ on the TVsum dataset. In Section 4.4 , we

apply our proposed model on an emotional dataset. The experi-

mental result shows that our model is able to highlight the video

content as consistent as the active level of arousal in affective com-

puting task. 
.1. Experimental settings 

In this paper, we evaluate the performance of the proposed

odels on three standard datasets: the SumMe dataset [28] , the

Vsum dataset [36] and the Continuous LIRIS-ACCEDE dataset

40] . While SumMe and TVsum are two benchmark datasets in

ideo summarization with multiple human-annotated summaries

or each video, the continuous LIRIS ACCEDE is a standard anno-

ated emotional dataset. 

In our experiments, we evaluate automatic summarization re-

ults (A) by comparing them to the human-created summaries (B)

nd report the F-measure values to measure the performances of

ompared methods. This metric has been widely used in current

ork for video summarization [8,16,28] , which is defined as fol-

ows: 

 = 

2 × p × r 

p + r 
, (5)

p = 

# matched pairs 

# f rames in A 

× 100% , (6)

 = 

# matched pairs 

# f rames in B 

× 100% . (7)

here p is the precision and r is the recall. In this paper, we report

he Mean F-measure and the Nearest-Neighbor F-measure (NN-F-

easure) by comparing the predicted summaries with the ground

ruth summaries. The Mean F-measure is the average value of the

-measure for all subjects. It is given by: 

 ̄= 

1 

N 

N ∑ 

i =1 

F i (8)

here N is the number of subjects, and F i is the F-measure for

ubject i . The NN-F-measure is the maximum of F i , and it is given

y: 

 max = max 
i 

( F i ) (9)

his metric is used to evaluate the performance of the proposed

ethod based on the most similar summary from all viewers. We

se the standard toolbox proposed by Gygli et al. [28] to evaluate

ur performance on SumMe and CLA dataset, and we utilize the

valuation code provided by Zhang et al. [24] on TVsum dataset. 

Based on the statistical analysis by Gygli et al. [28] , the length

f the final summary is about 15% of the original video. For our

odels, we set the summary length M = 15 in most of the experi-

ents. We follow the setting in existing work [1] to randomly se-

ect 80% of videos for training, while the remaining videos are used

or testing. In the first part of our proposed method, we construct

 two-class classification model based on the spatio-temporal deep

earning architecture. The class comprising the frames from the

ummary is treated as the minority class (positive class). The class

ontaining the remaining frames is set as the majority class (neg-

tive class). Therefore, in our algorithm, k is equal to 0 and K is

qual to 1. While the misclassification cost λ is set to 1.1, we have

lso tested its sensitivity. When the value is changed from value 1.1

o value 2, our proposed model achieves consistent performance

mprovement over other models, and when the lambda is equal

o 1.1, the model reaches the best performance. We believe that

ur over-sampling technique does improve the imbalanced situa-

ion in advance, thus we do not need a high penalization rate in

his stage. In this paper, we train an effective VGG-16 network for

ideo summarization by learning from the previous practices in

20] . Firstly, we pre-train VGG-16 network on the ImageNet dataset

41] . Secondly, we use a small learning rate (0.001) compared with

he learning rate used in the standard two-stream network [19] .

hirdly, we use data argument techniques to avoid the problem of
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ver-fitting. We also set dropout rates equal to 0.9 for the fully

onnected layers. Our models are implemented using the video ex-

ension version [20] of the Caffe toolbox [42] on a Tesla K80 GPU.

e use the widely used toolbox to extract optical flow [43,44] . Fur-

her, we follow the algorithm proposed by Zhang et al. to obtain

otion vectors [45] and stacking length L is set to 10, the same

etting as in [19,20] . All the statistical experiments are repeated

or five times, and the average results are reported. 

.2. Video Summary prediction on the SumMe dataset 

In this Section, we have conducted many experiments to

emonstrate the effectiveness of our proposed method on the

umMe dataset. SumMe consists of 25 videos covering different

eal-world topics, such as holidays, accidents, and sports. Each

ideo was annotated with more than 15 different user summaries.

t has 390 reference summaries in total. The annotation stage was

rocessed in a controlled environment, where participants were

sked to create their own summary for a given video. We find

ubjects’ responses are various within the same video. The diver-

ity and variety of the video contents and the subjects’ responses

ake this dataset a challenging benchmark for video summariza-

ion. As SumMe is a widely used standard benchmark dataset for

ideo summarization, more than seven models have been validated

n this dataset, including: Exemplar-based Subset Selection (ESS)

1] , Learning Submodular Mixtures of Objectives (LSMO) [16] , Cre-

ting Summaries from User Videos (CSUV) [28] , Summarizing Web

ideos using Titles (SWVT) [36] , Video MMR [46] , Video Sum-

arization with Long Short-term Memory (dppLSTM) [24] , Unsu-

ervised Video Summarization with Adversarial LSTM Networks

SUM-GAN) [25] and so on. 

To evaluate the effectiveness of our proposed imbalanced

etwork, we firstly compare our results with a random baseline as

ell as the state-of-the-art models of video summarization, includ-

ng Video Representation Clustering based Video Summarization

VRCVS) [5] , ESS [1] , LSMO [16] , CSUV [28] , SWVT [36] , Video MMR

46] , dppLSTM [24] and SUM-GAN [25] . For the random baseline,

e randomly select M = 15 percentage of video sequences as the

nal summary. Considering the fact that VRCVS is a recent cluster-

ased static video summarization model, we provide two versions

f VRCVS for comparisons, i.e. VRCVS and VRCVS-shot. VRCVS di-

ectly represents the final summary as individual separated frames,

nd VRCVS-shot is an extension of the original VRCVS, which con-

tructs the final summary with the shots containing those individ-

al frames. The video shots in this method are obtained via a su-

erframe segmentation algorithm [28] . In our experiments, we also

rovide the comparisons with some state-of-the-art dynamic video

ummarization models, such as ESS [1] , SWVT [36] , LSMO [16] ,

SUV [28] , Video MMR [46] , dppLSTM [24] and SUM-GAN [25] .

or those models, we follow the parameter settings provided by

heir work. Besides, for the comparison, we also provide different

ersions of the proposed methods based on the spatio-temporal

eep architectures (VSST). These methods include VSST-OP, VSST-

V, VSST-RGB, VSST-RGB&MV and VSST-Imbalance. Among them,

SST-OP, VSST-MV, and VSST-RGB are with one-stream deep ar-

hitecture. VSST-OP, VSST-MV, and VSST-RGB indicate the methods

hat use optical flow, motion vectors, and RGB image as the input

f the one-stream ConvNet, respectively. VSST-RGB&MV is model

ith a two-stream learning structure, including RGB images as

he input of the spatial stream and multi-frame motion vectors

s the input of the temporal stream. VSST-Imbalance uses imbal-

nce technique to handle the class imbalance problem in video

ummarization, which can be seen as the imbalanced version of

SST-RGB&MV. All of these proposed models are evaluated on

rame level. The first M % frames with the higher predicted scores

re selected to construct the summary results. Since most of
ompared methods were produced on shot level, we also provide

 shot-level version of VSST-Imbalance (VSST-Imbalance-shot) for

air comparisons. We follow the existing work [24,25] to generate

hot-level summary result. The videos are initially temporally seg-

ented into disjoint intervals using kernel temporal segmentation

KTS) [47] . The final summary is comprised of those segments

ith highest predicted scores. The predicted score of a segment is

qual to the average score of the frames in that interval. 

The comparison results are shown in Table 1 with the average

ean-F-measure (AMF) and the average NN-F-measure (ANF).

SS [1] and LSMO [16] were supervised methods based on deep

eatures while CSUV [28] and video MMR [46] were unsuper-

ised methods based on hand-crafted features. DppLSTM was

lso based on deep learning architecture using long short-term

emory (LSTM) [24] . Here, we report the best performances of

heir method. SUM-GAN was proposed by Mahasseni et al., which

tilized generative adversarial framework (GAN) for video sum-

arization based on the long short-term memory network (LSTM)

25] . SUM-GAN sup is the supervised version proposed in their pa-

er. Generally, the deep learning based methods [1,16,24,25] out-

erform the classical models [28,46] . It can be seen that the

erformances of the dynamic video summarization techniques

re better than those of the static video summarization methods

5] . The proposed imbalance-based method achieves the best

MF and ANF. Compared with the random baseline, the proposed

odel achieves more than twice of the corresponding values in

he evaluation metrics. In addition, the performances of nearly all

he proposed models (VSST-RGB, VSST-MV, VSST-RGB&MV, VSST-

mbalance and VSST-Imbalance-shot) are also better than those

tate-of-the-art models (CSUV, LSMO, ESS, SWVT, dppLSTM and

UM-GAN sup ), which confirms that the proposed method could

apture most of the attractive and representative contents from

ideo sequences. Although our two-stream deep ConvNets are con-

tructed based on VGG-16, which is not the most innovative deep

etworks, compared with the model based on LSTM or GAN, our

rchitecture achieves the best performance. The experimental re-

ults also indicate that the models with two-stream learning struc-

ure (VSST-RGB&MV and VSST-Imbalance) are better than those

ne-stream methods (VSST-RGB, VSST-OP and VSST-MV). In these

ne-stream models, the performance of VSST-OP is worse than

hat of VSST-MV, although motion vectors cannot represent the

otion information as precisely as optical flow. According to film

heorists, motion is highly expressive able to evoke strong emo-

ional responses in viewers [4 8,4 9] . In fact, studies by Detenber

t al. [49] and Simmons et al. [50] concluded that an increase of

otion intensity on the screen causes an increase in the audiences

rousal. The analysis of the relationship between motion intensity

nd user summaries is conducted. We investigate the distribution

f subject summaries with the increase of motion intensity in term

f motion vectors in SumMe dataset. We find the average motion

ntensity of the frames, which are selected by half of subjects,

s more than 1.7 times higher than the corresponding values of

ll frames in the videos of SumMe. The experimental results in

able 1 support that the multi-frame motion vectors are effective

o capture this kind of temporal information than optical flow. 

We also explore other deep ConvNets such as the residual net-

ork [51] on our proposed architecture. Table 1 shows the per-

ormances generated by our one-stream model VSST-RGB imple-

ented by different deep architectures including ResNet-18-RGB

nd ResNet-50-RGB. To ensure the fairness of the comparison, we

btain the results from the standard residual network [51] and

he residual network with our setting, i.e. the dropout rate and

he learning rate, and the best performances of them are given

n Table 1 . From these results, it is easily observed that although

esNet-18-RGB has the similar number of layers with VSST-RGB,

he AMF and ANF of it are less than the proposed VSST-RGB. 
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Table 1 

The performance comparison of our proposed methods with other models on SumMe dataset. ‘—-’ denotes that the 

result is not reported in existing papers. 

Method AMF (%) ANF (%) 

Unsupervised methods Baseline Random 14.3 28.6 

Existing static methods VRCVS [5] 1.0 0.5 

VRCVS-shot 14.9 40.4 

CSUV [28] 23.4 39.4 

Video MMR [46] —- 26 . 6 

Existing dynamic methods SWVT [36] 26.6 —- 

LSMO [16] —- 39 . 7 

ESS [1] —- 40.9 

dppLSTM [24] 17.7 42.9 

SUM-GAN sup [25] —- 43.6 

Supervised methods Other deep architectures ResNet-18-RGB 26.5 44.6 

ResNet-50-RGB 29.5 45.8 

VSST-OP 23.0 39.9 

VSST-RGB 32.0 53.4 

VSST-MV 35.2 53.8 

Proposed methods VSST-RGB&MV 35.4 56.3 

VSST-Imbalance 35.5 57.7 

VSST-Imbalance-shot 26.1 54.2 

Fig. 3. The classification accuracies of two versions of the proposed methods on 

SumMe dataset. 
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Moreover, owing to the contribution of deeper layers, the perfor-

mance of ResNet-50-RGB is better than ResNet-18-RGB, but it is

still worse than ours. 

Next, we report the classification accuracies (Acc.) of the

two versions of our models, including VSST-RGB&MV and VSST-

Imbalance in Fig. 3 . In the learning scheme, the balanced data

with their corresponding summary category labels from SumMe

dataset are input to train the two-stream deep ConvNet, and the

cost-sensitive learning is utilized in the two-stream network. From

Fig. 3 , it is clear that the imbalance-based method obtains higher

accuracies on both spatial stream and temporal stream in SumMe

dataset. 

Fig. 3 indicates that the proposed imbalanced deep model has

already achieved a very high accuracy. This very high accuracy,

however, does not necessarily result in a very high final AMF/ANF

score. This is because that the high accuracy in the classification

task only means the model can predict whether a frame should

be in the final summary or not. But to achieve a high value of

AMF/ANF, the model requires precisely predicting the selection of

each frame similar to most of the subjects. Unfortunately, for dif-

ferent subjects, their responses often vary even within the same

video. Even to the same subject, the ranges of the responses for

different videos also fluctuate. Thus, high classification accuracy is

not equivalent to high AMF/ANF score. 

To visualize the predicted results of a given video, we present

a sample of the predicted result of the proposed model for the

video “Jump” from SumMe dataset in Fig. 4 . As seen, this video
equence depicts the jump procedure including preparation, jump-

ng and landing stages. The first row of Fig. 4 describes the average

ossibility of each frame whether it would be selected as summary

ased on all subjects’ selections. We can also call this probability

s the score for each frame. In the following three rows show the

rediction scores generated by three versions of our models: VSST-

GB&MV, VSST-Imbalance-shot and VSST-Imbalance, respectively.

he last row shows the final automatic summary of this video.

rom this example, we can find that the predicted scores of our

ethods are very similar to the ground truth of all subjects, and

ur final summary covers all the main stages in the action “Jump”.

urthermore, a comparison of the second and the third or fourth

ows of Fig. 4 reveals the influence of the class imbalance issue on

ideo summarization. We can see that fast fluctuations exist from

00 to 400 frames in the prediction score of VSST-RGB&MV. We

peculate it is due to the class imbalance problem in video sum-

arization, as this fluctuations phenomenon does not happen in

he average selection of the video. From the fourth row, we can see

hat the proposed VSST-Imbalance method could handle this issue

ell. VSST-Imbalance can detect the landing stage of “Jump” (from

40 to 950 frames), which was not in the summarized results from

he average selection of the video. But this stage is also an impor-

ant component in the action “Jump”. In addition, by the compari-

on of our proposed frame-based model and shot-based model, we

an easily observe that our frame-based model can automatically

reserve the connection between consecutive frames. Although the

ummary is constructed based on frame level, the content of it is

oherent. The final summary is comprised of informative and con-

inuous segments that keep motion information instead of individ-

al separate frames. We believe this is another important advan-

age of our method. 

The mismatch between our selection and user summaries in

ig. 4 (from 940 to 950 frames) inspires us to investigate the dis-

ribution of the user summaries in the different locations of the

arget video. Fig. 5 shows the experimental result. We divide the

ideo into two groups: the first δ% and the last (100 − δ%) . We

hen calculate the percentage of user summaries in each group. In

his figure, each bar corresponds to a value of δ. We report 21 val-

es of δ, which are 0, 5, 10,..., 90, 95, 100. From the last three bars,

e find most of the subjects are prone to assign less attention in

he last 10% of the videos. The reason is that the landing part of

he action “Jump” has not been selected in the subjects’ response

 Fig. 4 ). 

We also investigate the impact of different summary lengths

 on SumMe dataset. Based on the statistical analysis by Gygli
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Fig. 4. A sample of the predicted result on video “JUMP” of SumMe database. 

Fig. 5. The distribution of the user summaries in the different locations on the video. δ indicates the location where we split the video and it ranges from 0 to 100. For 

example, when δ = 50 , the blue bar gets about 68% and the red bar achieves about 32%. It means that subjects are prone to assign about 68% of the summary result in the 

first 50% of the videos. 
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t al. [28] , the length of the final summary is about 15% of the

riginal video. In our work, we set the summary length M to be

5 percentage of the whole video sequence. In the following, we

rovide the performance results for a range of models, includ-

ng VSST-RGB&MV, VSST-Imbalance, VSST-OP and VRCVS-shot, for

hich different values of M are applied. VRCVS-shot is an exten-

ion of the static summarization model VRCVS [5] , which con-

tructs the final summary with the shots containing those indi-

idual frames summarized by VRCVS. The others are three ver-
ions of our proposed method. VSST-OP is with one-stream deep

rchitecture using optical flow as the input. VSST-RGB&MV is with

wo-stream learning structure, including RGB images as the in-

ut of the spatial stream and motion vectors as the input of

he temporal stream. VSST-Imbalance is the imbalanced version of

SST-RGB&MV. Fig. 6 (a) shows the values of the average Mean-

-measure of these four methods when M varies from 5 to 25.

ig. 6 (b) shows the value of the average NN-F-measure when

 varies from 5 to 25. From these figures, we can see that 
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Fig. 6. Performance comparison with different summary length M on SumMe dataset. 

Table 2 

Efficiency comparison of different feature 

extraction methods on SumMe dataset. 

Method Average speed (fps) STD 

VSST-MV 71.06 0.01 

VSST-OP 1.86 0.40 
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VSST-RGB&MV and VSST-Imbalance achieve the best performances

when the summary length M = 15 . They outperform the static

model and one stream model in all different values of M . VRCVS-

shot gains the best results when the summary length M = 25 .

VSST-OP achieves the best average mean-F-measure when M = 25

and the best average NN-F-measure when M = 15 . 

Finally, we compare the efficiency of feature extraction on

SumMe dataset in Table 2 . In VSST-MV, the motion vectors are ex-

tracted as the temporal information. In VSS-OP, we follow the ex-

isting work to calculate and obtain the optical flow as the tempo-

ral information. Table 2 shows the average speed and the standard

deviation of different methods. The average speed of motion vec-

tors extraction is about 71.06 frames per second (fps). This speed

is almost 40 times faster than the process of optical flow. Taking

into consideration the large number of frames in videos, this dif-

ference matters and presents a significant advantage for practical

application of video summarization. Therefore, the selection of mo-

tion vectors instead of optical flow reduces the computational cost

of our model. 

4.3. Video summary prediction on the TVSum dataset 

The TVSum dataset is a category-based benchmark for dynamic

video summarization proposed by Song et al. [36] . This dataset

is commonly used in video summarization [24,25,36] . It contains

50 videos downloaded from YouTube in 10 categories defined in

the TRECVid Multimedia Event Detection (MED). The length of the

videos varies from 2 to 10 min. Videos represent various genres,

including news, documentaries and user-generated content. This

dataset provides 20 user-annotated summaries as well as a shot-

level important score for each video. And each shot has a uniform

length of 2 s. Thus, in our SVR process, we also uniformly subsam-

ple the videos of TVsum to 2 fps by following the setting of exist-

ing work [24] . Then, for the training data, we assign the shot-level

score to each input frame. After SVR prediction, each test frame in

the same interval has the identical predicted score. 
In this section, we conduct the comparisons using the ran-

om baseline as well as the state-of-the-art models of video sum-

arization, including Video Representation Clustering based Video

ummarization (VRCVS) [5] , Summarizing Web Videos Using Titles

SWVUT) [36] , Video Summarization with Long Short-term Mem-

ry (dppLSTM) [24] and Unsupervised Video Summarization with

dversarial LSTM Networks (SUM-GAN) [25] . SWVUT is a title-

ased dynamic video summarization method [36] . Song et al. col-

ected an extra set of images to learn the visual concepts from

 video title. They utilized these image search results to find vi-

ually important shots later. Zhang et al. applied LSTM technique

o model the variable-range temporal dependency among video

rames [24] . They believed that LSTM was helpful to derive both

epresentative and compact video summaries. In their experiments,

wo extra static video summarization databases were adopted

s their training data, and dppLSTM was one of their proposed

ethod which achieved the best performance on TVSum dataset.

UM-GAN is a recent dynamic video summarization model based

n the advanced deep learning architecture (GAN) [25] . Here, we

eport the best performances of their proposed methods on TVSum

hich utilized augmented data for training. For the random base-

ine, we randomly select M = 15 percentage of video sequences

s the final summary. Since all of the compared methods were

valuated on shot-level, we provide different shot-level versions of

he proposed methods including our one-stream model (VSST-MV-

hot), and our two-stream models (VSST-RGB&MV-shot and VSST-

mbalance-shot). We report the comparison results in Table 3 . 

Table 3 shows the video summarization performance with the

ean-F-measure and the NN-F-measure on TVSum dataset. Obvi-

usly, all dynamic video summarization methods outperform the

tatic method (VRCVS) and the random baseline. The deep learn-

ng methods (dppLSTM, SUM-GAN and VSST) achieve higher AMF

nd ANF than the classical method (SWVUT). Although we do not

tilize any spatial information in the experiments, our proposed

ne-stream model based on MV (VSST-MV-shot) is still competi-

ive with the LSTM and GAN based models, and our two-stream

odels (VSST-RGB&MV-shot and VSST-Imbalance-shot) gain higher

MF and ANF on TVSum dataset. 

.4. Video affective computing on the Continuous LIRIS-ACCEDE 

ataset 

Affective video content analysis aims to automatically recog-

ize emotions elicited by videos [40] . It has a large number

f related applications, such as mood-based personalized content
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Table 3 

The performance comparisons using the average F-measure on tvsum dataset. ‘—-’ denotes that the result 

is not reported in existing papers. 

Method AMF (%) ANF (%) 

Unsupervised methods Baseline Random 14.4 29.2 

Existing static methods VRCVS [5] 4.9 6.0 

VRCVS-shot 24.7 34.0 

Existing dynamic methods SWVT [36] 50.0 

dppLSTM [24] 58.7 78.6 

SUM-GAN sup [25] 61.2 —- 

Supervised methods Proposed methods VSST-MV-shot 58.2 81.0 

VSST-RGB-shot 62.0 83.9 

VSST-RGB&MV-shot 62.8 83.8 

VSST-Imbalance-shot 62.8 84.0 

Fig. 7. A sample video called “Superhero” on CLA dataset. The different color curve reflects the arousal value for each viewer. The red point in the axis denotes the corre- 

sponding visual content. 
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Table 4 

The performance comparisons using the average F- 

measure (AF) on CLA dataset. 

Method AF (%) 

Baseline Random 13.32 

Proposed methods VSST-RGB&MV 32.13 

VSST-Imbalance 54.28 
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T  
elivery, video indexing, and video summarization. The affective

evel is an particularly important measure of the viewers‘ atti-

ude toward video content. Hence, we believe an effective video

ummarization model should also be helpful to do the affective

ideo content analysis. 

In this section, we evaluate the performance of the proposed

ethod for affective computing on the Continuous LIRIS-ACCEDE

CLA). CLA is an annotated emotional database for affective video

ontent analysis [40] . It has valence and arousal self-assessments

or 30 movies. The CLA covers several movie genres, such as com-

dy, animation, action, adventure, thriller, documentary, romance,

rama and horror. The total length of the movies in this dataset is

 h, 22 min, and 5 s. Annotations were collected from ten partici-

ants ranging in age from 18 to 27. The annotation process aimed

t continuously collecting the self-assessments of arousal and va-

ence that viewers feel while watching the movies. CLA uses the

ell-known 2D valence-arousal, in which arousal scale measures

he intensity of the emotion. It means the video contents with

igh arousal parts are more attractive and memorable than others.

ence, in this experiment, we try to explore the performance for

motion prediction of the proposed method, and the arousal value

s treated as the ground truths for our evaluation. 

Fig. 7 shows a sample video called “Superhero” on the CLA

ataset with the corresponding arousal values of five different

iewers. The different color curve reflects the value of arousal in-

ex for each viewer who watched this video, and the red point

n the axis denotes the corresponding visual content in this video.

his video depicts a sad story about a little boy. The little Jeremy

s a shy boy with a vivid imagination. Unfortunately, he was di-

gnosed with Leukemi. His mother wanted him to be brave and

uild a superhero in his imagination. From this figure, we can

nd the arousal value is changing with the content of this movie.

a  
hen Jeremy was bullied by other kids in classroom (160th to

65th s), most of the viewers started to have a relatively high level

f arousal. When the boy thought of his fantastical hero and fought

ack (305th to 310th s), all of the viewers were in high spirits. In

he middle of the video sequence, when his mother was folding

aundry, all of the viewers maintained a stable state of arousal. Af-

er several days, Jeremy fell ill, and he dreamed of himself falling

own from a building in his coma. In this dream, he was hanging

ut of the building, but his superhero failed to save him (820th to

25th s), and all viewers were in relatively low spirits. In the end,

he little boy was not able to overcome his illness, and his mother

aid goodbye to her little child with tears from 1070th to 1075th s.

f we observe the curve of arousal, we can also find that the view-

rs were associated with a visible emotional change in this process.

e want to investigate that if our model can predict the arousal of

he video. 

By applying our effective VSST-RGB&MV and VSST-Imbalance

odels to this emotional dataset, we carried out another phase

f experiments to compare the proposed methods with the ran-

om baseline. For the random baseline method, we randomly se-

ect M = 15 percentage of video sequences as the final summary.

he ground truths of the videos are generated depending on their

rousal value. The experimental results are displayed in Table 4 ,
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Fig. 8. The validation accuracy of the spatial and temporal streams our proposed methods on positive and negative classes in CLA dataset. 
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in which the average F-measure (AF) is reported and it shows the

similarity between the method and the ground truths. From the

results listed in Table 4 , it can be seen that the performances of

the proposed methods are much better than the random baseline,

and our imbalanced model is quite similar to the arousal value of

the videos. These results indicate that the proposed method has a

potential for affective com puting as well as other related applica-

tions. 

To investigate the effectiveness of our proposed imbalanced

two-stream network, we provide the classification accuracy (Acc.)

of two versions of our methods: VSST-RGB&MV and VSST-

Imbalance on CLA dataset in Fig. 8 , and it is shown on negative and

positive classes separately. It is known that, in the classical ma-

chine learning, the classifiers usually try to minimize the number

of errors they will make in dealing with data. This setting is valid

when the costs of different errors are equal [31] , and as a result,

the class imbalance problem causes severely negative effects on

the performance of learning methods. In the Fig. 8 , the blue bars

represent the classification accuracy achieved by VSST-RGB&MV,

and the red bars represent the corresponding values achieved by

the proposed imbalanced model VSST-Imbalance. From Fig. 8 , it is

seen that our proposed imbalanced networks improve the valida-

tion accuracy of two-stream ConvNets by about 20% in the positive

class. And in the negative class of the temporal stream, we can also

see that with the help of over-sampling and cost-sensitive learn-

ing technique, there is a significant improvement. It supports that

the proposed method is effective in addressing the class imbalance

problem. 

5. Conclusions and future work 

In this paper, we propose a novel dynamic video summariza-

tion model based on deep learning architecture. While the over-

sampling algorithm is conducted to balance the class distribution

on training data, and the two-stream ConvNets with the cost-

sensitive learning is proposed to handle the class imbalance in fea-

ture learning. The novel deep learning architecture for video high-

light prediction contains two information streams. In the spatial

stream, RGB images are used to represent the appearance of video

frames, and in the temporal stream, multi-frame motion vectors

are introduced to extract temporal information of the input video. 

In empirical validation, we evaluate our proposed method

on two datasets. The experimental results demonstrate that the
roposed methods produce video summary with better qual-

ty compared with the baseline methods as well as the other

epresentative state-of-the-art models. In addition, extensive ex-

erimental results also support that our proposed method is able

o predict the video content with high level of arousal in affec-

ive computing task. Further research can be identified as: (i) to

ntegrate other imbalance techniques with our proposed method;

ii) to apply the proposed method to other video-based appli-

ations; (iii) to propose an end to end architecture for video

ummarization. 
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