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Abstract—Recent studies have demonstrated that a well de-
signed deep convolutional neural network (CNN) model achieves
competitive performances on detecting the presence of secret
message in digital images, compared with the classical rich model
based steganalysis. In this paper, we propose to investigate a
category of very deep CNN model−the deep residual network
(DRN), for steganalysis. DRN is suitable for steganalysis from
two aspects. For the first, the DRN model usually contains a
large number of network layers, which proves to be effective to
capture the complex statistics of digital images. For the second,
DRN’s residual learning (ResL) method actively strengthens the
signal coming from secret messages, which is extremely beneficial
for the discrimination between cover images and stego images.
Comprehensive experiments on standard dataset show that the
DRN model achieves very low detection error rates for the state of
arts steganographic algorithms. It also outperforms the classical
rich model method and several recently proposed CNN based
methods.

Index Terms—Steganalysis, convolutional neural network, deep
residual network, residual learning, steganography

I. INTRODUCTION

Steganalysis is the art of revealing the presence of secret

messages embedded in cover signals such as digital images [1].

Although this technique has developed a lot in the past decades

[2-5], it is still challenging to detect modern steganographic

algorithms accurately.

Most of methods formulate steganalysis as a binary clas-

sification problem. Among them, the rich model based ste-

ganalysis [5] achieves the best detection accuracy to most of

steganographic algorithms. In the training stage, the method

first extracts various handcrafted features, i.e. co-occurrence

matrices, from the filtered digital images. Then, an ensemble

classifier [6] is trained to discriminate cover images and their

stego versions. In the testing stage, this trained classifier is

used to determine whether a new input image contains secret

message. The rich model method proves to be effective for

the uniform embedding steganography, for example, the least

significant bit (LSB) steganography or the LSB matching

steganography. However, it is hard to attack the content

adaptive steganography, especially for several state of the art

algorithms such as the Highly Undetectable steGOnography

(HUGO) [7], the Spatial UNIversal WAvelet Relative Distor-

tion stegnography (S-UNIWARD) [8], the HIgh-pass Low-pass

Low-pass steganography (HILL) [9] and the Minimizing the

Power of Optimal Detector steganography (MiPOD) [10].

Several pioneering works have been proposed to use deep

CNN to attack content adaptive steganography. Unlike the rich

model method that utilizes handcrafted features, CNN based

methods directly learn effective features from input images to

classify covers and stegos. In [11], Tan and Li presented a

stacked convolutional auto-encoder to detect the presence of

secret message. In this network, three processing units extract

features from input images and a three-layer fully connected

neural network maps the extracted features into their labels.

For each processing unit, it contains a convolutional layer,

a maximum pooling layer and a sigmoid activation layer.

The network shows better performance than the traditional

subtractive pixel adjacency matrix steganalysis [4], but it is

worse than the rich model method. Qian et al. in [12] proposed

a different CNN architecture consisting of five convolutional

layers, in which each layer is followed by an average pooling

layer and a nonlinear activation layer. To better distinguish

cover images and stego images, the paper proposed to use

Gaussian rather than sigmoid as the activation function. Even

though Qian’s network is inferior to the rich model method,

the performance gap between CNN and the rich model has

been narrowed from 14% (Tan and Li’s network) to 2%−5%.

To further improve the accuracy of CNN for steganalysis,

Xu et al. [13] designed a new CNN model incorporating

the domain knowledge of steganography and steganalysis. By

taking absolute values to outputs of the first convolutional

layer and applying the tanh activation function to the first

two convolutional layers, the network improves the modeling

ability to input images and prevents overfitting. Because

of these modifications, Xu’s network achieves competitive

performances with the rich model method on S-UNIWARD

and HILL. After trying numerous experiments for CNN with

different structures, Pibre et al. [14] found a CNN model

that first surpasses the rich model method on S-UNIWARD at

0.4 bit-per-pixel (bpp). Pibre’s network has two convolutional

layers but no pooling layers. This feature makes the model able

to preserve the information generated by message embedding

when the data goes through the whole network. The reported

detection error rate to 0.4 bpp S-UNIWARD is 7.4%, which

is greatly smaller than rich model’s 20%. In summary, these

pioneering works indicate that the performance of CNN model

for steganalysis depends heavily on their architectures.

Deep neural network models are able to approximate highly

complex functions more efficiently than the shallow ones [15-

17]. This ability indicates that very deep neural network can

capture complex statistical properties of natural images, which

may be beneficial for image classification. Recent works [18-
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Fig. 1: DRN for steganalysis. In the HPF sub-network, a 5× 5 KV kernel filters the input cover/stego image to get the noise

residual image. In the residual learning sub-network, a building block for dimension increasing doubles the number of feature

maps to the input signal, which is further processed by several building blocks for residual learning (ResL). n1, n2, n3, or n4

denotes that there are n1, n2, n3, or n4 ResL blocks following the current layer. The classification sub-network maps features

into labels. In the figure, 64@7× 7 denotes that there are 64 filters with the size of 7× 7.

20] also verify that very deep CNN models achieve much

better performances than previous CNN models for the large

scale image recognition task. Even though great success has

been achieved for very deep CNN models in image recogni-

tion, the research of it for steganalysis is still blank.
Designing effective CNN model for steganalysis requires

the domain knowledge of steganography and steganalysis.

Actually, steganalysis can be viewed as a special case of binary

classification: classifying objects (covers) and objects added

with weak signals (stegos). To better discriminate covers and

stegos, a CNN model is necessary to preserve or strength weak

stego signals generated by message embedding. Unfortunately,

this domain knowledge has not yet been considered in recently

proposed CNN models.
Recently, He et al. [18] has proposed a very deep CNN mod-

el − the deep residual network for image classification. The

network has successfully overcome the performance degrada-

tion problem when a neural network’s depth is large. Because

of its great success in image recognition, this paper aims to

apply the DRN for steganalysis. Two appealing characteristics

of DRN make it suitable for steganalysis. For the first, the

depth of DRN is large, providing the network with powerful

ability to capture useful statistical properties of input covers

and stegos. For the second, instead of learning an underlying

function directly, DRN explicitly fits a residual mapping,

which enforces the network to emphasize the weak signal

generated by message embedding. We present comprehensive

experiments on the standard BOSSbase [21] dataset for five

state of the art steganographic algorithms. Experimental results

show that DRN is not only better than the classical rich model

method, but also outperforms several recently proposed CNN

models for steganalysis.

II. DEEP RESIDUAL NETWORK FOR STEGANALYSIS

In this section, we introduce the DRN model for steganal-

ysis. First, the overall structure of DRN is presented. Then,

the parameter learning to DRN is described. At the end, we

explain rationality of DRN’s residual learning for steganlysis.

A. Network Structure

Fig.1 illustrates the architecture of DRN in this paper. The

network contains three sub-networks, i.e. the high-pass filter-

ing (HPF) sub-network, the deep residual learning sub-network

and the classification sub-network. These sub-networks have

their own roles in processing the information in the overall

model, which are described as follows.

The HPF sub-network is to extract noise residuals from

input cover/stego images. Previous studies indicate that ex-

tracting residual signals instead of pixels can largely suppress

image content, leading to a narrow dynamic range and a large

signal-to-noise ratio (SNR) between the weak stego signal and

the image signal. As a result, statistical descriptions to the

filtered image become more compact and robust [5]. Mathe-

matically, the residual image x is the convolution between the

input image I and the HPF kernel k:

x = I ∗ k (1)

where ∗ denotes convolution operator. We follow the qian’s

setting and choose the k as the KV kernel [12].

The residual learning sub-network is to extract effective

features for classifying covers and stegos. This sub-network

contains two categories of layers, the pre-processing layer and

the residual learning layer. The pre-processing layer consists

of a convolutional layer with 64 convolutional filters (the size

is 7 × 7), a batch normalization layer, a ReLU activation

layer and a maximum pooling layer. The pre-processing layer

is to capture many different types of dependencies among

elements in the residual image. Its purpose is to make the

network extract enough statistical properties to detect the

secret message more accurately. For the residual learning layer,

it is constituted by two kinds of building blocks: a small block

for DRN with small depth and a bottleneck block for DRN

with large depth. Details about the structure of two building

blocks are introduced in [18]. Each convolutional layer in a

building block is followed by a batch normalization layer and

a relu activation layer. For ordinary residual learning, both the
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input and the output have the same size of feature maps. For

dimension increasing, the output has double size of feature

maps than the input. To enforce each block having the same

complexity, the feature map is down-sampled by factor 2 for

the dimension increasing block. In our DRN model, there

are four stages of processing, which improves the number of

feature maps from 64 to 512.

The final classification sub-network consists of fully con-

nected neural network model, mapping features extracted from

the residual learning sub-network into binary labels. To ensure

the modeling ability of this sub-network, we set the number

of neurons to 1000.

B. Network Training

Parameters of the residual learning sub-network and the

classification sub-network are learned by minimizing the soft-

max function:

L = − 1

N

N∑
i=1

K∑
k=1

log

(
eoik∑K
k eoik

)
(2)

where N is the number of training samples, K is the number

of labels (K = 2), oik denotes the output of the network. The

weight matrix and bias vector for each layer is updated by the

mini-batch stochastic gradient descending (SGD) [22].

C. Rationality of Residual Learning for Steganalysis

Residual learning is initially proposed to address the degra-

dation problem for very deep neural networks. Instead of

approximating an underlying function H(x) directly, it turns

to fit its residual mapping F (x) := H(x)−x. As indicated by

He et al. in [18], it is easier to fit the residual mapping F (x)
than the original mapping H(x), especially when H(x) is an

identity or a near identity mapping.

Actually, to detect the presence of secret message, steganal-

ysis should correctly classify an input image y as:

y =

{
x+ 0, cover

x+ s, stego
(3)

where 0 is zero signal and s denotes the weak stego signal

generated by message embedding. By feeding y into a residual

learning block, the identity mapping of the network puts for-

ward x to the output of the block, while the residual mapping

F (x) fits 0 or s. Since both 0 and s are small signals, they

can be effectively modeled by the residual learning network

F (x). Consequently, s is effectively captured by the residual

mapping network. Therefore, the weak stego signal is expected

to be preserved and emphasized through the whole network.

III. EXPERIMENTS

A. Experimental Settings

The dataset used for performance evaluation is the BOSS-

base 1.01 version [23]. The BOSSbase is a standard dataset for

evaluating steganalysis and steganography. It contains 10,000

grayscale natural image with the size of 512×512. Following

Qian and Pibre’s setting, we crop the original 10,000 BOSS-

base images into 40,000 non-overlapped images with the size

256 × 256. Without decreasing the difficulty of steganalysis,

the cropped version leads to two advantages. For the first, the

number of training samples of new dataset is larger than the

original BOSSbase, which may prevent overfiting to a large

extent. For the second, the computational complexity is greatly

decreased due to the smaller size of input image.

For the DRN model, we initialize its weight matrices and

bias vectors by a zero-mean Gaussian distribution with the

fixed standard derivation of 0.01. The learning rate, momentum

and weight decay of the model are set to 0.001, 0.9 and 0.0001

respectively. The size of mini-batch for SGD is set to 10. All

experiments for the DRN are conducted on Nvidia’s Tesla K80

platform.

B. Relationship between the Detection Accuracy and the
Depth of DRN

This experiment is conducted to investigate how the depth of

DRN affects the performance of steganalysis. 30,000 cover im-

ages randomly selected from the cropped BOSSbase, and their

stegos which are generated by S-UNIWARD steganography

[8] at 0.4 bpp, are used as training set. The rest 10,000 covers

and stegos are used for testing. We select DRN models with

10, 20, 30, 40, 50 and 80 convolutional layers for evaluation.

These DRN models are configured as TABLE I.

TABLE I: Configurations for DRN models. [n1, n2, n3, n4]

represents the number of blocks for ordinary residual learning,

which is illustrated in Fig.1.

# conv. Block Type [n1, n2, n3, n4]

10 Small block [0, 0, 0, 0]

20 Small block [1, 2, 1, 1]

30 Small block [2, 3, 3, 2]

40 Small block [2, 5, 5, 3]

50 Bottleneck block [2, 3, 5, 2]

80 Bottleneck block [2, 3, 15, 2]

Fig.2 reports detection error rates of DRN models with

different number of convolutional layers. When the number is

smaller than 80, detection error rates decreases as the number

increases. The result indicates that deeper DRN model can

capture more reliable statistical properties of natural images

than the shallow one for accurate steganalysis. However, when

the number is 80, the overfiting phenomenon arises and results

in the increase of the detection error rate. For this reason, we

set the number of convolutional layer to 50 in the following

experiment.

C. Performance Comparisons

To demonstrate the effectiveness of the DRN for steganaly-

sis, we compare its performances with the rich model method

on five states of the art steganographic algorithms, i.e. HUGO-

BD (an improved version of the HUGO steganography) [23],

the Wavelet Obtained Weights steganography (WOW) [24],

S-UNIWARD [8], HILL [9] and MiPOD [10]. Same to the

setting in section B, 30,000 randomly selected cover images

and their corresponding stegos are used for training CNN
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Fig. 2: Detection error rates for DRN with different number

of convolutional layers.

models, the rest 10,000 cover images and their stegos are for

testing. The number of training epoch is set to 50.

TABLE II: Detection error rates for five steganographic algo-

rithms at payload 0.4 bpp.

Steganography Rich Model DRN (# conv. 50)

HUGO-BD 19.4% 4.1%
WOW 20.1% 4.3%

S-UNIWARD 20.3% 6.3%
HILL 24.2% 10.4%

MiPOD 22.1% 4.9%

TABLE II gives performance comparisons of DRN against

to rich model. We can find that DRN is better than the rich

model across all five steganographic algorithms. We compare

DRN with three representative CNN models, including Qian’s

network [12], Xu’s network [13] and Pibre’s network [14]. Re-

sults in TABLE III demonstrate that the DRN also outperforms

these CNN models for steganalysis.

TABLE III: Detection error rates for CNN models on five

steganographic algorithms at 0.4 bpp. ’\’ denotes that the result

is not reported in the paper.

Steganography Qian [12] Xu [13] Pibre [14] DRN

HUGO-BD 28.9% \ \ 4.1%
WOW 29.3% \ \ 4.3%

S-UNIWARD 30.9% 19.7% 7.4% 6.3%
HILL \ 20.7% \ 10.4%

MiPOD \ \ \ 4.9%

IV. CONCLUSION

This paper has investigated a category of very deep convo-

lutional neural network model−the deep residual network−for

steganalysis. Because of its large depth and new residual learn-

ing method, the deep residual network is naturally suitable

for discriminating cover images and stego images. Extensive

experiments on several challenging steganographic algorithms

validate that the deep residual network achieves significantly

better performances than the classical rich model method

and other CNN based methods. Our future work will focuse

on incorporating more domain knowledge of steganalysis in

the deep residual network, aiming to detect content adaptive

steganography with higher accuracy.
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