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Abstract

Background: As a physiological signal, EEG data cannot be subjectively changed or hidden. Compared with other
physiological signals, EEG signals are directly related to human cortical activities with excellent temporal resolution.
After the rapid development of machine learning and artificial intelligence, the analysis and calculation of EEGs has
made great progress, leading to a significant boost in performances for content understanding and pattern
recognition of brain activities across the areas of both neural science and computer vision. While such an enormous
advance has attracted wide range of interests among relevant research communities, EEG-based classification of brain
activities evoked by images still demands efforts for further improvement with respect to its accuracy, generalization,
and interpretation, yet some characters of human brains have been relatively unexplored.
Methods: We propose a region-level stacked bi-directional deep learning framework for EEG-based image
classification. Inspired by the hemispheric lateralization of human brains, we propose to extract additional information
at regional level to strengthen and emphasize the differences between two hemispheres. The stacked bi-directional
long short-term memories are used to capture the dynamic correlations hidden from both the past and the future to
the current state in EEG sequences.
Results: Extensive experiments are carried out and our results demonstrate the effectiveness of our proposed
framework. Compared with the existing state-of-the-arts, our framework achieves outstanding performances in
EEG-based classification of brain activities evoked by images. In addition, we find that the signals of Gamma band are
not only useful for achieving good performances for EEG-based image classification, but also play a significant role in
capturing relationships between the neural activations and the specific emotional states.
Conclusions: Our proposed framework provides an improved solution for the problem that, given an image used to
stimulate brain activities, we should be able to identify which class the stimuli image comes from by analyzing the
EEG signals. The region-level information is extracted to preserve and emphasize the hemispheric lateralization for
neural functions or cognitive processes of human brains. Further, stacked bi-directional LSTMs are used to capture the
dynamic correlations hidden in EEG data. Extensive experiments on standard EEG-based image classification dataset
validate that our framework outperforms the existing state-of-the-arts under various contexts and experimental setups.
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Background
In recent years, numerous noninvasive measurements of
brain activities have been proposed and applied in clin-
ical treatment and scientific research communities. One
of the most popular techniques is electroencephalography
(EEG). EEG is a recording of voltage fluctuations pro-
duced by ionic current flows on a variety of locations on
the scalp. While reflecting the brains’ spontaneous electri-
cal activities, EEG has the potential to provide a subjective
response based on their own experiences. EEG attracts
many research efforts due to its noninvasive way of mea-
suring/acquiring brain signals and easy recording with
high temporal resolution and low-cost equipment. As a
result, understanding EEGs evoked by specific stimuli has
been the goal for a variety of fields such as brain-computer
interface (BCI) [1, 2], emotion classification [3], medical
diagnosis [4–8], etc. While it is relatively easy to iden-
tify brain patterns related to audio stimuli or associated to
specific diseases, it is much more difficult to understand
what happens inside human brains when interacting with
visual scenes [9].

The idea of reading-the-minds while performing spe-
cific tasks has been long investigated, especially for build-
ing BCIs and other EEG-related research. Most of these
studies have mainly performed binary EEGs classification,
including presence or absence of a specific pattern such
as P300 detection [10, 11] and seizure detection [5, 12].
As known, several neurocognitive studies [13, 14] have
discovered that human brain activities contain detectable
patterns related to visual stimuli categories [15–17].

Unfortunately, in comparison with the success of
content-based multimedia understanding over the past
decades, EEG-based image classification still has a large
room for improvement with respect to several evalua-
tion criteria, including its accuracy, generalization, and
interpretability.

With the extensive application and in-depth promo-
tion of deep learning, an ever-increasing number of deep
learning models are proposed for content understand-
ing or pattern recognition of brain activities via EEGs
[4, 18–31]. In these methods, the original EEG data or the
extracted time-frequency features based on signal anal-
ysis algorithms are often used as the input, and some
characters of human brains have not been seriously con-
sidered, such as hemispheric lateralization. Although the
macrostructure of the right and left hemispheres of the
human brain appears to be similar, different composition
of neural networks allows for the specialized functioning
in each hemisphere [32]. Hemispheric lateralization refers
to the tendency for some neural functions or cognitive
processes to be specialized to the right or left hemispheres
of the brain. Although a growing body of evidences has
suggested that cognitive tasks in human brains rely on a
number of related processes whose neural loci are largely

lateralized to one hemisphere or the other [33], most of
current research efforts focus on studying the lateraliza-
tion in different tasks [34–37], or developing better tools
and models for assessing lateralization [33, 38]. Until now,
no existing work for EEG-based image classification tried
to integrate the hemispheric lateralization into the deep
learning model to extract the region-level information
from the brain signals.

Although deep learning models have been reported
to achieve performance improvement for EEG-based
object classification, most of these models ignore the
dynamic correlations embedded inside EEGs. In those
existing models, Convolutional neural networks (CNN)
can extract static information from each timestamp of
EEG data. Compared with CNN, unidirectional recurrent
neural networks reported in [18] are capable of preserv-
ing and extracting the information from the past. But it
ignores the related dynamic information from the future.
As object classification is a high-level cognitive task, the
electrical activations from both the past and the future
have dynamic correlations with the current spontaneous
response and the state of subject. To this end, it becomes
desirable to consider these attributes and factors in devel-
oping next generation deep learning models for brain
activity analysis and understanding.

To tackle the aforementioned challenges, we pro-
pose a region-level stacked bi-directional deep learn-
ing approach, extending [39] from single to stacked
bi-directional network and conduct new analysis, com-
parisons, and experiments, for EEG-based image classi-
fication. By considering the hemispheric lateralization of
human brains, the region-level information as the input of
the deep learning model is extracted to further strengthen
and emphasize the differences between two hemispheres
with low dimension, and the stacked bi-directional long
short-term memories (BiLSTMs) are used to capture the
dynamic correlations across EEG sequences.

In comparison with the existing state-of-the-arts, our
proposed model achieves a number of advantages and
novelties, which can be highlighted as: (i) inspired by the
hemispheric lateralization in cognitive tasks, we intro-
duce a new concept of region-level computation into the
deep learning framework to provide an alternative solu-
tion for the problem of EEG-based image classification;
(ii) we propose a new deep brain analytics framework to
capture the dynamic correlations across EEG sequences;
and finally (iii) we carry out extensive experiments and
the results demonstrate that our deep framework achieves
superior performances in comparison with the existing
state-of-the-arts.

The rest of the paper is organized as follows. In
“Related Work” section, we present a literature sur-
vey about the existing methods that use deep learn-
ing models for EEG-based image classifications. In
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“Methods” section, we describe the details of our pro-
posed region-level stacked bi-directional deep learn-
ing approach for EEG-based image classification. In
“Results” section, we report our extensive experimen-
tal results and validate the superiority and effectiveness
of our proposed framework, compared with the existing
state-of-the-arts. In “Discussion” section, we give over-
all discussion ,and finally “Conclusions” section provides
concluding remarks and future work.

Related Work
In general, the EEG data analysis and processing method
mainly includes two steps: feature extraction and pattern
recognition or machine learning-based methods to com-
plete the signal analysis[40, 41]. Before the popularity of
deep learning, the primary approaches for feature extrac-
tion mainly included time-frequency features extracted by
signal analysis methods, such as power spectral density
[42], bandpower [43], independent components [44], and
differential entropy [45]. The widely researched pattern
recognition and machine learning methods include arti-
ficial neural networks [46, 47], naive Bayes [48], support
vector machines (SVM) [49, 50], etc. With the extensive
application and in-depth promotion of deep learning, an
ever-increasing number of brain science and neuroscience
research teams are exploiting its strength in designing
algorithms to achieve intelligent understanding and anal-
ysis of brain activities via EEGs, leading to propose an
end-to-end model by integrating feature extraction and
classification/clustering.

Jiao et al. [23] proposed a multi-channel deep con-
volution network to classify mental loads. Wang et al.
[24] used LSTM network to classify motor imagery
tasks, and used a one-dimensional aggregation approx-
imation method to extract the network’s effective
features.

Cole et al. [25] used a predictive modelling approach
based on CNN for predicting brain ages. Their analy-
sis showed that the brain-predicted age is highly reliable.
Gao et al. [26] proposed a spatiotemporal deep convo-
lution model, which significantly improved the accuracy
of detecting driver fatigue by emphasizing the impor-
tance of spatial information and time dependence of
EEGs. Yuan et al. [27] proposed an end-to-end multi-
view deep learning framework to automatically detect
epileptic seizures in EEG signals. Li et al. [28] tried to
incorporate transfer learning into the construction of con-
volutional neural networks and successfully applied the
model to the clinical diagnosis of mild depression. Dong
et al. [20] used a rectified linear unit (ReLU) activa-
tion function and a mixed neural network of LSTM on
time-frequency-domain features to classify sleep stages.
Lawhern et al. [29] proposed a compact full convolutional
network as the EEG-specific model (EEGNet) and applied

it to four different brain-machine interface classification
tasks. Zhang et al. [30] proposed a cascaded and parallel
convolution recurrent neural network model to accu-
rately identify human expected motion instructions by
effectively learning the spatio-temporal representation
of the original EEG signal. Tan et al. [31] converted
EEG data into EEG-based video and optical flow infor-
mation, classified them by CNN and RNN, and estab-
lished an effective rehabilitation support system based on
BCI.

Multimedia data, which contain a large amount of con-
tent information and rich visual characteristics, are con-
sidered to be a very suitable stimuli material and widely
used in the acquisition and analysis of EEG signals [9, 18, 51].
Researchers tried to identify and classify the content
information of multimedia data viewed by users through
the analysis of EEG signals [15, 52, 53]. Spampinato
et al. [18], used LSTM network to learn an EEG data repre-
sentation based on image stimuli and constructed a map-
ping relationship from natural image features to EEG rep-
resentation. Finally, they used the new representation of
EEG signals for classification of natural images. Compared
with traditional methods, these deep learning-based
approaches have achieved outstanding classification
results.

Recent studies have shown that it is possible to recon-
struct multimedia content information itself by mining
EEG data. Kavasidis et al. [9] proposed a method for
reconstructing visual stimuli content information through
EEGs. By using a variable-valued autoencoder (VAE)
and generative adversarial networks (GANs), they found
that EEG data contain patterns related to visual content,
and the content can be used to generate images that
are semantically consistent with the input visual stimuli.
While these methods have demonstrated the capability
of using deep learning framework for EEG-based image
classification, the original EEG data or the extracted time-
frequency features based on signal analysis algorithms
are often used as the input, and some characteristics of
human brains have not been seriously considered, such
as hemispheric lateralization, and the classification accu-
racy achieved to date by Spampinato et al. was 82.9%
[18], leaving significant space for further research and
improvement.

Methods
Given the extensive survey on existing research in
the previous section, we propose a novel region-level
stacked bi-directional deep learning framework for visual
object classification. Our approach consists of three
stages, including the region-level information extrac-
tion stage, the feature encoding stage and the clas-
sification stage. The structural illustration is given in
Fig. 1.
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Fig. 1 Structural illustration of the proposed deep framework

The region-level information extraction stage
Although a growing body of evidence has suggested that
in some cognitive processes, the neural loci are largely
lateralized to one hemisphere or the other, no existing
work for EEG-based image classification tried to inte-
grate this concept into the deep learning model to extract
the region-level information from the brain data. In this
section, we seek to extract region-level information from
the raw EEG signals. For channel i, the raw EEG signal
denoted as si is considered as input to the region-level
information extraction stage, where i ∈ [1, lch = 128] is
the index for channels, and lch is the number of channels.
Following that, the region-level information extraction
stage splits the EEG data into three groups, including
the left hemisphere, the right hemisphere, and the mid-
dle group. Denoting the left hemisphere group, the right
hemisphere group, and the middle group as, S[l], S[r], and
S[m], respectively, we attach each channel si to one group
based on their corresponding electrode physical location.
Each channel in the left hemisphere group has a cor-
responding channel in the right hemisphere group, and
hence, the difference, dj, can be calculated according to
the following equation:

dj = S[l]
j − S[r]

j (1)

where
(

S[l]
j , S[r]

j

)
is considered as the corresponding pair.

j ∈ [
1, lg

]
is the index for the left hemisphere, the right

hemisphere, and the difference, and lg is the number
of channels attached to the left hemisphere or the right
hemisphere. The output of the region-level information
extraction stage is obtained when the difference, D =[
dj

]lg
j=1, is combined with the middle hemisphere group,

S[m], into one variable, X, and pass it to the feature encod-
ing stage as an input according to the following equation:

X =
[

DT S[m]T
]

(2)

The feature encoding stage
The feature encoding stage aims at extracting the EEG
description from the region-level information via a
stacked bi-directional LSTM network. The bi-directional
LSTM learns long-term dependencies between time steps
of the sequence data. It not only solves the vanishing gra-
dient problem, which appears in recurrent neural network
(RNN) through the forget gate �f and the update gate �u,
but also captures the dynamic correlations inside the EEG
sequences. In contrast to the unidirectional LSTM, the bi-
directional LSTM calculates the output yt at any point of
time t by taking information from both earlier output state−→a t and later output state ←−a t in the sequence, as shown in
Eq. (3).

yt = σy
(
Wy

[−→a t , ←−a t] + by
)

(3)

The encoder network is constructed by a stack of v bi-
directional LSTM layers as illustrated in Fig. 2. At each
time step t, the first bi-directional LSTM layer takes the
input as the region-level information output, X = [

xt]ls
t=1,

where ls is the length of sequence. If other bi-directional
LSTM layers are present, the output of the first layer is
provided as input to the second layer and so on. The ouput
of the deepest bi-directional LSTM layer at the last time
step is used as the EEG decription for the whole region-
level information sequence. The structure of the layer in
bi-directional LSTM, containing a forward layer and a
backward layer, is illustrated in Fig. 2. As seen, the for-
ward layer output sequence, −→a t , is iteratively calculated
using inputs in a sequence from time 1 to time t − 1,
while the backward layer output sequence, ←−a t , is calcu-
lated using the inputs from the end of sequence to time
t+1. Both the forward and backward layer outputs are cal-
culated by using the standard LSTM updating equations
[54]. The LSTM uses custom-built memory cells to store
information, and these memory cells are used in finding
and exploiting long range dependencies. Figure 3 shows a
single LSTM memory cell. At each time t, the LSTM takes
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Fig. 2 Two stacked layer structure in bi-directional LSTM with three consecutive time steps

Fig. 3 Long short-term Memory cell
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the layer input xt , the previous layer output at−1, and the
previous cell output state ct−1 as its inputs, and produces
the layer output at and the cell output state ct as the its
outputs. The memory cell also takes into account the can-
didate for replacing the memory cell, c̃t , while training and
updating parameters. There are three gates in an LSTM
cell, including an update gate, �u, a forget gate, �f , and
an output gate, �o. According to the gated structure, an
LSTM can manage long-term dependencies to allow use-
ful information pass through the network. At time t, for
example, the update gate �t

u, the forget gate �t
f , the output

gate �t
o, and the candidate for replacing the memory cell

c̃t , can be calculated according to the following equations:

�t
f = σ

(
Uf at−1 + Wf xt + bf

)
(4)

�t
u = σ

(
Uuat−1 + Wuxt + bu

)
(5)

�t
o = σ

(
Uoat−1 + Woxt + bo

)
(6)

c̃t = tanh
(
Ucat−1 + Wcxt + bc

)
(7)

where, for k ∈ {f , u, o, c}, Wk is the weight matrix map-
ping the layer input (the region-level information, X =[
xt]ls

t=1) to the three gates and the candidate for replacing
the memory cell. While Uk is the weight matrix connect-
ing the previous cell output state to the three gates and
the candidate for replacing the memory cell, bk is the bias
vector. The functions σ() and tanh() are the element-wise
sigmoid and hyperbolic tangent, respectively.

Based on the results of the Eqs. 4-(7), at each time itera-
tion t, the cell output state ct , and the layer output at , can
be calculated according to the following equation:

ct = �t
f × ct−1 + �t

u × c̃t (8)

at = �t
o × tanh

(
ct) (9)

The final output of an LSTM layer is a vector of all out-
puts, represented by Y = [

yt]ls
t=1, at any time step yt ,

which can be calculated according to Eq. 3. When taking
the EEG-based image classification as an example, only
the last element of the output vector, yls , is considered.

The classification stage
The classification stage consists of an independent com-
ponent analysis (ICA) module and a classifier layer. The
ICA is placed before the layer of classifiers as a fea-
ture selection module, which takes the EEG description
from the stacked bi-directional LSTMs network as an
input and returns the independent statistical features as
an output. Two classifiers have been investigated in this
paper, including the SoftMax classifier and the multiclass
support vector machine (SVM).

Results
To evaluate our proposed region-level stacked bi-
directional deep learning framework, we conduct three
phases of experiments. In the first phase, we evaluate the
classification performance of our proposed deep learning
framework on the largest standard dataset for EEG-based
image classification: ImageNet-EEG [18]. In the second
phase, we try to study the classification performance of
the proposed framework upon different EEG frequency
bands, including Beta and Gamma bands. In the third
phase, we study the relationships between the neural acti-
vations and the specific emotional states.

Experimental Settings
All the experiments are conducted on the standard
dataset for EEG-based image classification: ImageNet-
EEG. This dataset is a publicly available EEG dataset for
brain imaging classification proposed by Spampinato et al.
[18]. ImageNet-EEG is collected using a 128-channel cap
with active, low-impedance electrodes (actiCAP 128Ch).
It includes the EEG signals of six subjects produced by
asking them to look at the visual stimuli, which are images
selected from a subset of ImageNet [55], containing 40
classes and each class has 50 images. During the subjec-
tive experiment, each image was shown on the computer
screen for 500 ms. The sampling frequency and data
resolution were set to 1kHz and 16 bits, respectively. For
benchmarking purposes, the proposed framework is com-
pared with the EEG-based image classification methods
[18, 56], which are the latest deep learning methods on
the same dataset, and the baseline method: represen-
tational similarity based Linear discriminant analysis
(RS-LDA) [57].

For our method, the iteration limit is set as 2500, and
the batch size is 440 for the feature encoding stage of
the stacked bi-directional LSTMs. There are two layers
in the stacked bi-directional LSTM network (v = 2),
and number of nodes in each layer is 68. Concerning the
parameters for ICA, the number of extracted features is
60, and the iteration limit is set to 400. Our framework is
implemented on the Tesla� P100 GPU.

EEG-Based image Classification
In the first phase of experiments, we try to validate the
effectiveness of our region-level stacked bi-directional
deep learning framework for EEG-based image classifi-
cation. All the experimental setting follows that of the
existing work [18].

Table 1 provides the experimental results in terms
of the classification accuracies for our proposed frame-
work, the existing state-of-the-art RNN-based method
[18], siamese network [56], and the RS-LDA method [57].
As seen, while the precision rate achieved by our pro-
posed region-level stacked bi-directional deep learning
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Table 1 The classification performance comparisons among our
proposed framework, RNN-based, siamese network, and the
RS-LDA

Models Accuracy

Proposed region-level stacked bi-directional LSTMs 97.3%

Siamese network [56] 93.7%

RNN-based model [18] 82.9%

RS-LDA [57] 13.0%

framework is 97.3%, the existing state-of-the-art, siamese
network, and the RS-LDA compared are 82.9%, 93.7% and
13.0%, respectively.

Study of Different Frequency Bands
To test our proposed region-level stacked bi-directional
deep learning framework upon different frequancy bands,
we carry out the second phase of experiments on the same
dataset ImageNet-EEG [18]. The EEG data in ImageNet-
EEG [18] has been filtered by a notch filter (49-51 Hz) and
a second-order band-pass Butterworth filter (low cut-off
frequency 14 Hz, high cut-off frequency 71 Hz). There-
fore, the recorded signal only included the Beta (15-31 Hz)
and Gamma (32-70 Hz) rhythm bands. Beta wave is seen
usually on both sides in symmetrical distribution and is
most evident frontally. It is closely associated with nor-
mal waking consciousness. As known, low amplitude beta
with multiple and varying frequencies is often associated
with active, busy or anxious thinking and active concen-
tration [58]. Gamma band is used to represent binding
of different populations of neurons together into a net-
work for the purpose of carrying out a certain cognitive or
motor function [59]. Here, we conduct a detailed exam-
ination to study the contributions from each frequency
band.

Table 2 summarizes the experimental results obtained
by the proposed framework across different EEG fre-
quency bands. Here, we do not change the deep learning
framework described before. We just extract the signal in
the same format but with the specific frequency band as
the input for our framework. From Table 2, it can be seen
that the classification accuracy achieved by the signal only
with Gamma band is close to the best accuracy (97.3%),
and better than that of the signal only with Beta band.
While the classification accuracy achieved by the signal
only with Beta band is 94.90%, the classification accuracy
achieved by the signal only with Gamma band is 96.89%.

Table 2 The Classification accuracies achieved by different
rhythm band

Input Rhythm Band Accuracy

Beta band only 94.90%

Gamma band only 96.89%

The classification results are consistent with the discover-
ies of the existing work, demonstrating that synchroniza-
tion of neural activity in the Gamma band plays a signif-
icant role in the classification of objects or other related
visual perceptions or higher cognitive functions [60].

Case study of the neural activations and emotions
Different from most of the existing EEG datasets that only
include less than 10 categories, ImageNet-EEG contains
40 categories, and most of them are common objects or
animals. Hence, for this dataset, we are not satisfied in just
presenting the novel deep learning framework with good
classification results. In the third phase of experiments,
we try to study the relationships between the neural acti-
vations and the specific emotional states. The EEG data
in ImageNet-EEG only contains the Beta and Gamma
bands. From the existing work, the emotional processing
enhanced Gamma band powers at frontal area as com-
pared to processing neutral pictures [61], and the signal
from Gamma band is suitable for EEG-based emotion
classification [62]. Thus, all experiments provided here are
focused on the signals from Gamma band.

This dataset includes 40 categories, including “dog”,
“cat”, “butterfly”, “sorrel”, “capuchin”, “elephant”, “panda”,
“fish”, “airliner”, “broom”, “canoe”, “phone”, “mug”, “convert-
ible”, “computer”, “watch”, “guitar”, “locomotive”, “espresso”,
“chair”, “golf”, “piano”, “iron”, “jack”, “mailbag”, “missile”,
“mitten”, “bike”, “tent”, “pajama”, “parachute”, “pool”, “radio”,
“camera”, “gun”, “shoe”, “banana”, “pizza”, “daisy” and
“bolete” (fungus). Each category contains 50 images with
300 EEG signals for the six subjects. In these categories,
the class “gun” is a category that could obviously cause
negative emotions. Most of other categories are thought
as the typical neutral ones, such as “phone”, “watch”, “bike”,
“shoe”. We calculate the average power of the EEG data
from the classes “gun” and “phone” in different locations.
The experimental results are provided in Fig. 4. From

Fig. 4 The average power in Fz, Cz, Pz, and Oz locations when stimuli
are from the categories of “gun” and “phone”, respectively
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Fig. 5 The average power of the AFz and Fz locations for the
categories of “gun”, “panda”, and “phone”

these results, we can find the EEG data with the stimuli
from the negative category “gun” contain a higher power
in Fz. It means that, compared with the central, pari-
etal and occipital areas, the negative emotional processing
enhances Gamma band power at frontal areas.

We compare the average power of the EEG data from the
classes “gun”, “panda”, and “phone” in AFz and Fz in Fig. 5.
The giant panda is easily recognized by the large, distinc-
tive black patches around its eyes, over the ears, and across
its round body. It is thought as one of the world’s most
adored and protected rare animals. Hence, we estimate
it may trigger positive emotion compared with other
categories in ImageNet-EEG. From the experimental
results, it is validated that there exists a statistically signifi-
cant effect as such that the neural patterns for the category
“gun” have higher gamma responses at prefrontal sites
than the category “panda” and “phone”, and this result is
consistent with the findings that the neural patterns have
higher gamma responses at prefrontal sites for negative
emotions [63].

Figure 6 demonstrates the average energy distribution in
Gamma band of the “gun”, “phone”, and “panda” categories.

From this figure we can see that an increase of the average
relative energy in the prefrontal area during the period of
the images from the category “gun” is observed as com-
pared to that from the category “phone” and “panda”.
These results are consistent with our previous observa-
tions in Fig. 4, Fig. 5, and some existing work [64, 65],
which shows that neural signatures associated with posi-
tive, neutral and negative emotions do exist.

Discussion
Study on human brain intelligence has been researched
across a number of areas, including neuroscience, brain
science, and computer science, in which EEG-based inter-
facing with brains remains one of the most popular meth-
ods [10, 15, 66]. While artificial intelligence is becom-
ing the most actively pursued topic in computer vision,
exploitation of brain intelligence could provide enormous
potential for further advancing AI techniques as well
as their practical applications. In CVPR2017, Spamp-
inato et al. [18] reported their work on EEG-based brain
recognition of visual object categories via deep learn-
ing and achieved significantly improved results. As their
deep learning model is primarily limited to the existing
approaches, however, there still exist enormous spaces
for further research, especially in terms of exploiting the
unique feature of brain intelligence.

To exploit the features of brain intelligence and achieve
further improvement upon the deep learning based brain
recognition of visual object categories, we introduce a new
concept of integrated hemispheric lateralization stacked
bi-directional deep learning, where the region-level infor-
mation, as the input of the stacked deep learning model, is
extracted to further strengthen and emphasize the differ-
ences between two hemispheres and this leads to improve
the recognition performances.

To future discuss the contribution of each stage
designed in our proposed region-level stacked bi-
directional deep learning framework, we further run
experiments to explore the effectiveness of different con-
figurations made by individual stages. In the first stage,

Fig. 6 Scalp distribution of the average energy at Gamma frequency sub-band for all participants and sessions of the three categories: “gun”,
“phone”, and “panda”
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Table 3 Comparative assessment of the proposed framework upon different configurations

Framework

Configurations 1 2 3 4 5 6

Lateralization Region-level info. Region-level info. None Region-level info. Region-level info. Region-level info.

Feature encoder Unidirectional LSTM Unidirectional LSTM BiLSTM BiLSTM BiLSTM Stacked biLSTM

Classifier SoftMax ICA+SVM SoftMax SoftMax ICA+SVM ICA+SVM

Accuracy 92.9% 94.3% 95.3% 97.0% 97.1% 97.3%

individual elements considered, including with or with-
out the region-level information. In the second stage, we
provide the results with three different feature-encoding
techniques, including unidirectional LSTM, bi-directional
LSTM, and stacked bi-directional LSTMs. In the third
stage, we provide the results with different classifiers,
including SoftMax and SVM.

Table 3 reports the experimental results in classification
precision rates with all the various configurations, from
which we can observe and draw a number of conclusions
that can be described as follows.

(i) The performance of bi-directional LSTM is always
better than that of the unidirectional LSTM as the feature
encoder in the second stage. These results are demon-
strated by configurations 1 to 5 in Table 3. While the best
performance with the unidirectional LSTM is 94.3% (con-
figuration 2), the best performance with the bi-directional
LSTM is 97.1% (configuration 5).

(ii) The performance of using the region-level infor-
mation is better than of without using the the region-
level information in the first stage. These results are
demonstrated by configurations 3 to 5 in Table 3. While
the best performance of without using the region-level
information is 95.3% (configuration 3), the best perfor-
mance of using the region-level information is 97.1%
(configuration 5).

(iii) The performance using ICA plus SVM is always bet-
ter than that of SoftMax in the second stage. These results
are demonstrated by configurations 1 to 6 in Table 3. If
the unidirectional LSTM is selected as the feature encoder,
the best performance achieved with SoftMax is 92.9%
(configuration 1), and the best performance achieved by
SVM classifier is 94.3% (configuration 2). A similar case
happens when the bi-directional LSTM is selected as the
feature encoder.

(iv) The performance of the stacked bi-directional
LSTMs is better than that of the unidirectional LSTM and
bi-directional LSTM as the feature encoder in the second
stage. These results are demonstrated by configurations
1 to 6 in Table 3. While the best performance with the
unidirectional LSTM and bi-directional LSTM are 94.3%
and 97.1%, respectively (configuration 2 and configuration
5), the best performance with the stacked bi-directional
LSTMs is 97.3% (configuration 6).

Conclusions
In this research, by combining region-level information
and stacked bi-directional LSTMs together into a com-
plete system, we propose a novel architecture for EEG-
based image classification. To the best of our knowledge,
such attempts have never been reported in the literature
before, indicating a certain level of novelties. In our novel
architecture, the region-level information is extracted
to preserve and emphasize the hemispheric lateraliza-
tion for neural functions or cognitive processes inside
human brains. Further, stacked bi-directional LSTMs are
used to capture the dynamic correlations hidden in EEG
data. Extensive experiments are conducted on standard
EEG-based image classification dataset ImageNet-EEG, in
order to assess the accuracy of the proposed framework
and validate that our framework outperforms the existing
state-of-the-arts under various contexts and experimen-
tal setups. We also find that the signal of Gamma band is
useful to achieve good performances in the classification
of objects, and it also plays a significant role in the classi-
fication of emotions, which validate that neural signatures
associated with positive, neutral and negative emotions do
exist. Further, our research has produced substantial evi-
dences to support that data estimated straightforwardly
from human minds could enable machine learning models
to make better and more human-like judgements.

Two possibilities can be identified for further research,
which include: (i) applying our deep learning framework
for other EEG-based content understanding or pattern
analysis tasks; (ii) reconstructing the multimedia content
information through the proposed EEG representations.
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