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ABSTRACT

Image steganalysis is to discriminate innocent images and

those suspected images with hidden messages. In this pa-

per, we propose a unified Convolutional Neural Network (C-

NN) model for this task. In order to reliably detect modern

steganographic algorithms, we design the proposed model

from two aspects. For the first, different from existing CN-

N based steganalytic algorithms that use a predefined high-

pass kernel to suppress image content, we integrate the high-

pass filtering operation into the proposed network by building

a content suppression subnetwork. For the second, we pro-

pose a novel sub-network to actively preserve the weak stego

signal generated by secret messages based on residual learn-

ing, making the successive network capture the difference be-

tween cover images and stego images. Extensive experiments

demonstrate that the proposed model can detect states-of-the-

art steganography with much lower detection error rates than

previous methods.

Index Terms— Image steganalysis, convolutional neural

network, residual learning, adaptive content suppression

1. INTRODUCTION

Steganography is the technique to hide secret messages into

multimedia signals such as audio, image or video, etc [1]. Ste-

ganalysis, from an opponent’s perspective, is the art of reveal-

ing the presence of secret messages embedded in digital medi-

a [2]. Among all steganalytic techniques, image steganalysis

plays an important role in many security systems and attracts

increasing interests in recent years [3].

Designing effective features that are sensitive to message

embedding is key to image steganalysis. Traditional meth-
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ods use handcrafted features to detect steganography [4-6].

However, the feature design is a difficult task which needs

strong domain knowledge about steganography and steganal-

ysis. Recently, deep neural networks have attracted increasing

interests in many image related tasks [7-8, 15]. Based on deep

CNN models, several interesting works have been proposed

to detect steganography. Compared with traditional method-

s that extract handcrafted features, CNN based steganalysis

directly learns effective features using various network archi-

tectures for discriminating cover images and stego images.

Tan and Li [9] first proposed to detect the presence of secret

messages based on a deep stacked convolutional auto-encoder

network. In [10], Qian et al. proposed a model for steganaly-

sis using the standard CNN architecture with Gaussian activa-

tion function. Xu et al. in [11] designed a new CNN structure

with tanh activation function and absolute operation after the

first convolutional layer. Pibre et al. in [12] proposed a novel

CNN model for image steganalysis, which obtains a low de-

tection error in the scenario that the message is hidden with a

same embedding key. Wu et al. in [13-14] proposed a nov-

el CNN model for image steganalysis, achieving much better

performances than previous methods.

However, two problems remain unsolved for the existing

CNN based steganalytic methods. Firstly, they only use a

fixed highpass kernel to preprocess the input image for con-

tent suppression, which may constrain useful information that

contains the difference between cover images and stego im-

ages to come into the following network. Secondly, there are

no effective learning methods to preserve the weak stego sig-

nal generated by secret messages, making the network hard to

learn useful features to discriminate covers and stegos.

To address these difficulties, this paper proposes a uni-

fied CNN model for steganalysis. On one hand, unlike pre-

vious methods that separately preprocess the input image and

extract features for classification, we integrate the highpass

filtering operation into the proposed network by building a

content suppression subnetwork. The highpass kernels in the

sub-network is adaptively updated in the network training, al-

lowing more powerful discriminative features come into the

subsequent network than that of CNN models with a prede-
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Fig. 1. The proposed network for image steganalysis. The network contains the content suppression sub-network, the residual

learning sub-network and the classification sub-network, which are used for the noise component extraction, feature learning

and label mapping respectively. In this figure, p@q × q denotes p convolutional kernels with the size of q × q.

fined kernel. To the best of our knowledge, this is the first C-

NN model that unifies image preprocessing and feature learn-

ing in a whole network for steganalysis. On the other hand,

we propose a novel learning scheme to actively preserve the

weak stego signal generated by secret message by incorpo-

rating residual learning [15] in our network. This learning

scheme has demonstrated superior performance than previous

CNN based steganalytic methods. In theory, we have proved

that shortcut connections in residual learning can effectively

preserve the weak stego signal for the network.

In the rest of this paper, we first introduce the proposed

network model in section 2. In section 3, we provide a theo-

retical analysis to explain the rationality of residual learning

for image steganalysis. In section 4, we validate the effec-

tiveness of the proposed model on several states of the art

steganographic algorithms. The paper is closed with the con-

clusion in section 5.

2. PROPOSED NETWORK MODEL

2.1. Network Architecture

Fig.1 shows the overall architecture of the proposed network

model. The network contains three sub-networks, which are

introduced in the following parts.

The content suppression sub-network is to extract the

noise component 1 of input cover/stego images. Three 5 × 5
kernels are used to convolve the input image. To pledge that

the sub-network is to extract the noise components, each of

three kernels is initialized by a highpass kernel, i.e. the KV

kernel [10]. These kernels are updated in model training.

The residual learning sub-network is to extract effective

features for steganalysis. The concept of residual learning

was originally proposed by He et al. in [15]. We follow the

idea of residual learning to design our network. In the residual

learning sub-network, 64 filters with the size of 7×7 are used

to convolve the noise components generated by the content

1The noise component of an image denotes the image filtered by a high-

pass filter. This is a general preprocessing for image steganalysis.

Fig. 2. Feature maps followed by several ResL blocks.

suppression sub-network. Following the convolutional layer

is a batch normalization layer, a ReLU activation layer and

a max pooling layer2. Then, the network uses two kinds of

blocks to process the data: the residual learning (ResL) block

and the dimension increasing block. A ResL block consists of

two convolutional layers, each of which is also followed by a

batch normalization layer and a ReLU layer. The size of con-

volutional kernels in the block is 3×3 and the number of ker-

nels is equal to the number of input feature map (details about

the block are described in [15]). A shortcut path connects the

input and the output of the block, acting as the identical map-

ping. For a dimension increasing block, the only difference

to a ResL block is that the number of feature maps is dou-

bled and each feature map is down-sampled for the output.

In general, there are several ResL blocks before a dimension-

al increasing block in the residual learning sub-network. We

use Fig.2 to represent feature maps followed by several ResL

blocks to make the figure of overall network compact. For

economical considerations, a bottleneck version for residual

learning and dimension increasing is developed for very deep

networks. Different from the non-bottleneck version with two

convolutional layers, a bottleneck version has three convolu-

tional layers [15].

The classification sub-network maps extracted features in-

to binary labels. Two output nodes are fully connected to fea-

2The batch normalization and ReLU are not shown in the figure.
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Fig. 3. (a). A typical CNN model can be abstracted as a cascaded network. (b). A residual learning network can be abstracted

as a cascaded network, where each building block has a shortcut connecting its input and output.

ture maps that are pooled in residual learning sub-network.

2.2. Network Training

Parameters of the proposed network are learned by minimiz-

ing the softmax loss function:

L(xi, θ) = −
K∑

k=1

1{yi = k} · log
(

eoi,k(xi,θ)∑K
k=1 e

oi,k(xi,θ)

)
(1)

where θ denotes the parameters of the network, including

weight matrices W and the bias vectors b. K is the num-

ber of labels, where K = 2 in our model. yi is the label of xi,

1{·} is the indicator function. oi,k(xi, θ) represents the out-

put of the network for the sample xi. W and b of the network

parameter θ are updated by the mini-batch stochastic gradient

descending (SGD):

W(t+ 1) = W(t)− α
1

N

∑
i∈B

∂L(xi, θ)

∂W
(2)

b(t+ 1) = b(t)− α
1

N

∑
i∈B

∂L(xi, θ)

∂b
(3)

where N is the size of a mini-batch B, α is the learning rate.

3. RATIONALITY OF RESIDUAL LEARNING FOR
STEGANALYSIS

He et al. in [15] presented a deep residual network for

large scale image classification. In this work, a new learn-

ing method called the residual learning has been proposed.

To approximate an underlying function H(x), residual learn-

ing does not fit it directly but turns to fit its residual mapping:

F (x) := H(x) − x. As indicated in his paper, it is easier

to optimize the residual mapping F (x) than the unreferenced

mapping H(x), especially when H(x) is an identical map-

ping or a near identical mapping.

For steganalysis, we believe that residual learning can pre-

serve the weak stego signal. Actually, the task of steganalysis

is to classify an input image as a cover or a stego:

y =

{
x+ 0, cover

x+ s, stego
(4)

where x represents the innocent cover image, 0 is zero vec-

tor and s denotes the weak stego signal. By feeding y in-

to a residual learning network, the identity mapping of the

network puts forward x to the output of the block, while the

residual mapping F (·) fits 0 or s. Since both 0 and s are s-

mall signals, they can be effectively modeled by the residual

mapping F (·). Consequently, s can be effectively captured by

the residual network. Therefore, the stego signal is expected

to be preserved.

In the following part, we provide a mathematical analysis

to prove that weak stego signal can be effectively preserved

in a CNN model with residual learning.

3.1. Feature Diminishing in a Typical CNN Model

For steganalysis, the feature diminishing becomes a major

problem. This indicates that the weak stego signal added to a

cover image would be attenuated as it travels the whole CNN

model, making the later network hardly capture effective fea-

tures to discriminate cover images and stego images. To illus-

trate this phenomenon, we perform a mathematical derivation

as follows. Assume we have a cover image x and its stego

version y, where the stego image y can be represented as:

y = x+ s (5)

Generally, a CNN can be abstracted as a typical model of

Fig.3(a). In this abstracted form, the mapping Hi(x) (i =
1, 2, · · ·, n) could be a convolutional layer, a nonlinear activa-

tion layer, a pooling layer or their combinations. By feeding

x and y into a typical CNN model, we obtain their outputs:

Zn
t (x) = Hn(· · ·H2(H1(x))) (6)

Zn
t (y) = Hn(· · ·H2(H1(y))) (7)
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Compared with the cover image x, the stego signal s is often

very weak. Therefore, we iteratively use Taylor expansion for

Zn
t (y) and get the following result:

Zn
t (y) = Zn

t (x) +

(
n∏

i=1

F (i)(x)

)
s+O(||s||2) (8)

where O(||s||2) is the expansion remainder, F (i)(x) is:

F (i)(x) =

{
H ′

i(x), i = 1

H ′
i(· · ·H1(x)), i < 1 ≤ n

(9)

In above equation, H ′
i(x) denotes the derivative of the map-

ping Hi(x):

H ′
i(x) =

∂Hi(x)

∂x
(10)

In a CNN model, each element fi in the derivative matrix

F (i)(x) satisfies the following inequality:

|fi| ≤ 1 (11)

We explain this result for each basic operation in a typical

CNN model:

• For a convolutional layer, fi actually relates to the sum

of image pixels multiplied by weights in a convolution-

al kernel. To ensure the stability of learning CNN mod-

els, existing methods initialize convolutional kernels

with small weights (e.g. Gaussian random values with

zero mean and 0.01 standard derivation) and set learn-

ing rate for parameter updating to a small value. These

settings ensure that elements in convolutional layers are

small during the learning phase. In addition, the size of

a convolutional kernel in CNN models is often small.

Consequently, fi of a convolutional layer is small and

Eq.(11) can be satisfied in most cases;

• For a nonlinear activation layer, fi in F (i)(x) is ensured

to be smaller than 1. This is because for existing acti-

vation functions, e.g. the sigmoid, tanh or ReLU, their

slopes are smaller than or equal to 1 anywhere.

• For a pooling layer, either the average pooling or the

maximum pooling does not increase the absolute value

of each element in a feature map Hi(x), thus Eq.(11) is

satisfied.

With the property as the Eq.(11),
∏n

i=1 F
(i)(x) decays

exponentially as n increases. This will make the difference

between x and y very small for large n. Under this case, the

later layers in a CNN model can hardly discriminate cover

images and stego images.

3.2. Preserve Weak Stego Signal with Residual Learning

For image steganalysis, a network with shortcut connections

(the model as Fig.3(b) shows) can effectively overcome the

feature diminishing phenomenon. Same to the analysis as

Fig.3(a), we feed the cover image x and its stego image y
into the network as Fig.3(b) and obtain their outputs:

Zn
s (x) = Rn(· · ·R2(R1(x))) (12)

Zn
s (y) = Rn(· · ·R2(R1(y))) (13)

where Ri(x) denotes:

Ri(x) = Hi(x) + x, 1 ≤ i ≤ n (14)

Similarly, we perform the Taylor expansion for Eq.(13):

Zn
s (y) = Zn

s (x) +

[
n∏

i=1

[
1 +H ′

i(F
(i)
R (x))

]]
s+O(||s||2)

(15)

where F
(i)
R (x) is:

F
(i)
R (x) =

⎧⎪⎨
⎪⎩

x, i = 1

Ri−1(x) i = 2

Ri−1(· · ·R1(x)), i > 2

(16)

Unlike the case as Fig.3(a), the coefficient matrix of the stego

signal s,
∏n

i=1

[
1 +H ′

i(F
(i)
R (x))

]
, does not exponentially

decay as the depth increases. To better understand the advan-

tage of the network with shortcut connections, we factorize

Zn
s (x) and Zn

s (y) when n is 2. For Zn
s (x), we have:

Z2
s (x) = R2(R1(x)) = x+H1(x) +H2(H1(x) + x)

(17)

For Zn
s (y), we iteratively use Taylor expansion and obtain:

Z2
s (y) = R2(R1(y))

= R2(R1(x)) + [R′
2(R1(x)) ·R′

1(x)] s+O(||s||2)
= x+H1(x) +H2(H1(x) + x) + s+ [H ′

1(x)] s

+ [H ′
2(H1(x) + x)] s+ [H ′

2(H1(x) + x) ·H ′
1(x)] s

+O(||s||2)
(18)

We compared the factorization Eq.(18) with Eq.(8), and find

two advantages of the network with shortcut connections:

• The coefficient matrix for the stego signal s does

not decay as the network’s depth increases. Un-

like the Eq.(8), the coefficient matrices for s in E-

q.(18), i.e. the coefficient matrices for s, [H ′
1(x)] s,

[H ′
2(H1(x) + x)] s, are always kept to be no larger than

order one, independent of network’s depth. This prop-

erty ensures that the stego signal s does not decays as

the network’s depth increases;
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• The Signal-to-Noise Ratio (SNR) between the stego

signal and the image content does not decay as the net-

work’s depth increases. By checking Eq.(18), we find

that each term of x is always accompanied with a cor-

responding term of s, i.e. s for x, [H ′
1(x)] s for H1(x),

and [H ′
2(H1(x) + x)] s for H2(H1(x)+x). For a well

learned network, this property ensures a non-decaying

SNR between the stego signal s and the image content

x even the depth n is large.

4. EXPERIMENTS

This section is to validate the effectiveness of the proposed

model. The dataset used for validation is the BOSSbase 1.01

[16], which is a standard database for evaluating steganogra-

phy and steganalysis. The original BOSSbase contain 10,000

natural images with the size of 512×512. In our experiments,

each image in the dataset is cropped into 4 non-overlapping

256 × 256 cropped images. Therefore, we have a cropped

BOSSbase with 40,000 images.

For the proposed model, in the residual learning sub-

network and the classification sub-network, weight matrices

W are initialized by a zero mean Gaussian distribution with

the standard derivation 0.01 and biases vectors b are initial-

ized to zeros. The momentum and the weight decay in t-

wo sub-networks are set to 0.9 and 0.0001 respectively. The

learning rate α for W and b starts from 0.0005 and is divid-

ed 10 every 50 training epoches. For the content suppression

sub-network, three kernels are initialized to the KV kernel

and no bias vectors are incorporated in this sub-network. The

learning rate for the content suppression sub-network is set to

0.0001. The size of mini-batch SGD, N , is set to 20 and the

number of training epoch is set to 200.

4.1. Demonstration of Adaptive Content Suppression

In this experiment, we investigate the influence of adaptive

content suppression for image steganalysis. The proposed

model is compared with a baseline network that has fixed

highpass kernels in the content suppression sub-network. To

make the result comparable, three highpass kernels in the

baseline network are set to the KV kernel. For the archi-

tecture, we set [n1, n2, n3, n4] (the number of ResL block-

s illustrated in Fig.1) of both networks to [2, 2, 1, 1]. Thus,

the number of total convolutional layers in two networks is

20. We use the MATLAB version Spatial domain UNIver-

sal Wavelet Relative Distortion (S-UNIWARD) stegnography

[17], which can be downloaded from Fridrich’s homepage 3.

The payload is set to 0.4 bit-per-pixel (bpp). 30,000 randomly

selected cover images from the cropped BOSSbase and their

stegos are used as the training set. The rest images and their

stegos are used for testing.

3http://dde.binghamton.edu/download/stego algorithms/

Table 1 shows the training error and testing error for

the proposed network and the baseline network. The result

demonstrates that an adaptively learned content suppression

sub-network can improve the performance obviously.

Table 1. Detection errors for the network with and without

adaptive content suppression on SUNIWARD at 0.4 bpp.

Configuration Adaptive kernel Fixed kernel

Detection error 5.97% 8.21%

4.2. Performance Comparisons with Prior Arts

We conduct a comprehensive experiment to demonstrate the

effectiveness of the proposed network. We compare the pro-

posed network with the classical Spatial Rich Model based

steganalysis (SRM) [5] and its select-channel-aware version,

the maxSRMd2 steganalysis [6]. Four states of the art

steganographic algorithms, including the Wavelet Obtained

Weights steganography (WOW) [18], S-UNIWARD [17], the

HIgh-pass Low-pass Low-pass steganography (HILL) [19]

and the Minimizing the Power of Optimal Detector steganog-

raphy (MiPOD) [20], are used for validation. Unlike Pibre in

[12] used a same embedding key for all images, all stegano-

graphic algorithms hide secret messages for each cover im-

age with different embedding keys. Same to the setting in the

previous experiment, [n1, n2, n3, n4] of the model is set to

[2, 2, 1, 1]. 30,000 randomly selected images and their stegos

are for training the model, the rest 10,000 and their stegos are

for testing.

Table 2 gives the detection error rates of the proposed

network. The results demonstrate that our network achieves

much lower detection error rates than the rich model based

steganalysis over all settings. In addition, we compare the

proposed network with four states of the art CNN based ste-

ganalytic algorithms, including Qian’s network [10] and Xu’s

network [11]. Since Alexnet [21] is a representative CNN

model for image classification, we train an Alexnet model for

image steganalysis and report its performnace here. Table 3
gives the detection error rates of these CNN models. We find

that the proposed model achieves lowest detection errors.

5. CONCLUSIONS

This paper introduced a unified convolutional neural network

for image steganalysis. The proposed network has two im-

provements over previous CNN based steganalytic methods.

On one hand, our network unifies image preprocessing and

feature learning in a whole model. On the other hand, we pro-

posed a novel subnetwork to actively preserve the weak stego

signal based on residual learning. The experiment demon-

strates that adaptive content suppression can improve the de-

tection accuracy obviously. In addition, theoretical analysis
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Table 2. Detection error rates for SRM, maxSRMd2 and the proposed network on four steganographic algorithms.

Steganography
WOW S-UNIWARD HILL MiPOD

0.3 bpp 0.4 bpp 0.3 bpp 0.4 bpp 0.3 bpp 0.4 bpp 0.3 bpp 0.4 bpp

SRM 24.76% 20.08% 25.51% 20.70% 29.39% 23.57% 26.12% 22.26%

maxSRMd2 17.98% 15.20% 22.35% 18.84% 25.71% 21.63% 24.19% 20.38%

Proposed network 7.72% 3.46% 9.92% 5.97% 9.17% 6.23% 8.73% 3.95%

and experimental results show that residual learning can ef-

fectively overcome the feature diminishing phenomenon in

steganalysis, thus enables the proposed model to detect mod-

ern steganographic algorithms at high accuracies.

Current network shows promising performances on de-

tecting spatial domain steganography. In future works, we

will extend this network to detect steganography in the com-

pressed domain.

Table 3. Detection error rates for CNN models on three

steganographic algorithms at payload 0.4 bpp. ‘\’ denotes

that the result is not reported in the paper.

Steganography WOW S-UNIWARD HILL

Qian’s network [10] 29.30% 30.90% \
Xu’s network [11] \ 19.76% 20.76%

Alexnet network [21] 29.03% 28.22% 30.88%

Proposed network 3.46% 5.97% 6.23%
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