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ABSTRACT

Multimedia stimulation of brain activities is not only be-
coming an emerging area for intensive research, but also
achieved significant progresses towards classification of brain
activities and interpretation of brain understanding of multi-
media content. To exploit the characteristics of EEG signals
in capturing human brain activities, we propose a region-
dependent and attention-driven bi-directional LSTM network
(RA-BILSTM) for image evoked brain activity classification.
Inspired by the hemispheric lateralization of human brains,
the proposed RA-BiLSTM extracts additional information
at regional level to strengthen and emphasize the differences
between two hemispheres. In addition, we propose a new
attentional-LSTM by adding an extra attention gate to: (i)
measure and seize the importance of channel-based spatial
information, and (ii) support the proposed RA-BiLSTM to
capture the dynamic correlations hidden from both the past
and the future in the current state across EEG sequences.
Extensive experiments are carried out and the results demon-
strate that our proposed RA-BiLSTM not only achieves
effective classification of brain activities on evoked image
categories, but also significantly outperforms the existing
state of the arts.
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1 INTRODUCTION

Over the past decades, analyzing EEGs evoked by specific
stimuli patterns has been widely researched across a number
of areas, including neuroscience, artificial intelligence, neural
computation etc. The primary efforts, however, are focused
on (i) designing of various experimental paradigm based on
multimedia materials, including images, sounds, texts etc., as
stimuli to activate human brains and expose their cognitive
activities for computerized recognition and classification, such
as human face with clean background etc. [9]. (ii) artificial
intelligence algorithm development, particularly deep learning
models, for content understanding, pattern recognition and
classifications towards intelligent interpretation of human
brains or brain intelligence [12, 15, 17, 31]. While most of
these methods researched and reported in the literature follow
a similar roadmap, where the original EEG sequences of the
extracted time-frequency features are used as the input and
all sorts of machine learning models then follow, the unique
characteristics of human brains are not sufficiently explored,
especially among the extensive research across brain sciences,
such as hemispheric lateralization etc.

While the macrostructure of the left and right hemispheres
of human brains appears to be similar, research in brain sci-
ences indicate that the level of sensitivities to the differences
in stimuli patterns remains variable, and structural designs
of neural networks can benefit from individually specialized
function in each hemisphere [1]. Hemispheric lateralization
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refers to the tendency for some neural functions or cognitive
processes to be specialized to the right or left hemispheres
of the brain. Although a growing body of evidences have
suggested that cognitive tasks in humans rely on a number
of related processes whose neural loci are largely lateral-
ized to one hemisphere or the other [34], most of current
researches focus on studying the lateralization in different
tasks [5, 6, 23], or developing better tools and models for
assessing lateralization [7, 34]. To the best of our knowledge,
no research has been attempted to integrate the hemispheric
lateralization into the deep learning model to extract the
region-level information from brain signals.

Our extensive literature survey indicates that brain ac-
tivity analysis other than EEGs, such as fMRI-based etc.,
could give us new inspirations for further improvement. Con-
sidering the fact that EEGs are generated by a number of
different channels, and each individual channel is located in a
particular spatial position on the cap, their locations reflect
the characteristics of the brain responses across the EEG
sequences, and the time flow hides the dynamic correlation of
the brain activations. While deep learning models have been
reported to achieve performance improvement for EEG-based
object classification [2, 4, 12, 15, 31], most of these models
have not considered jointly both the spatial and dynamic
correlations embedded inside the EEG data sequences. In
addition, these models only consider each channel as a in-
dependent flow, and thus the spatial information and the
correlations across different channels are basically ignored.
On the other hand, EEG-based brain activity classifications
evoked by images are widely known as high-level cognitive
tasks, and the electrical activations from both the past and
the future provide important dynamics and correlations for
the current spontaneous responses and the state of the test
subjects. To this end, it becomes desirable to consider these
attributes and factors in developing next generation deep
learning models for brain activity analysis and understanding.

In addition, the attention mechanism, which allows a deep
network to pay attention to only part of the input information,
becomes one of the most powerful and influential ideas in
deep learning. Xu et al. proposed a deep learning model with
attention mechanism for image captioning [39]. As EEGs are
complex and channel-based temporal-spatial signal sequences,
some parts of human brains are more deeply involved than
others, leading to the oscillations in EEG signals and fur-
ther spaces for further research and improvement. To tackle
these challenges, we propose a bi-directional and attention
driven deep network in this paper for classifications of brain
activities. In comparison with the existing state-of-the-arts,
our proposed model achieves a number of advantages and
novelties, which can be highlighted as: (i) inspired by the
phenomenon of hemispheric lateralization of human brains,
we introduce a new concept of region-level computation into
the deep learning framework to strengthen and emphasize the
differences between two hemispheres with low dimension; (ii)
By selectively focusing on parts of input channels which are
useful in classifying EEG signals, we are the first to propose a
new attentional-LSTM, to integrate the attention mechanism
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in our framework to measure and seize the importance of
different EEG channels, and hence propose a RA-BiLSTM
(region-dependent, and bi-directional attention-driven LSTM)
deep learning framework to achieve significantly improved
performances for classifications of brain activities evoked by
natural images.; (iii) we propose a new deep brain analytics
method to capture the dynamic correlations hidden from both
the past and the future to the current state in EEG sequences;
and finally (iv) we carry out extensive experiments to support
that our deep framework achieves superior performances in
comparison with the existing state-of-the-arts.

The rest of the paper is organized as follows. In section
2, we present a literature survey about the existing methods
that use deep learning models for EEG-based image classifi-
cations. In Section 3, we describe the details of our proposed
region-dependent, and bi-directional attention-driven deep
network for EEG-based visual object classification. In Section
4, we report our extensive experimental results and validate
the superiority and effectiveness of our proposed framework,
compared with the existing state of the arts, and finally
Section 5 provides concluding remarks and future work.

2 RELATED WORK

At present, all the existing research on EEG-based analy-
sis can be summarized in two steps: feature extraction and
pattern recognition or machine learning-based methods to
complete the signal analysis[13, 22]. With the extensive ap-
plication and in-depth promotion of deep learning, an ever-
increasing number of brain science and neuroscience research
teams are exploiting its strength in designing algorithms to
achieve intelligent understanding and analysis of brain activi-
ties via EEGs, leading to an end-to-end model by integrating
feature extraction and classification/clustering.

Jiao et al. [18] proposed a multi-channel deep convolution
network to classify mental loads. Wang et al. [37] used LSTM
network to classify motor imagery tasks, and used a one-
dimensional aggregation approximation method to extract
the network’s effective features. Cole et al. [8] used a predic-
tive modelling approach based on CNN for predicting brain
ages. Their analysis showed that the brain-predicted age is
highly reliable. Gao et al. [14] proposed a spatiotemporal deep
convolution model, which significantly improved the accuracy
of detecting driver fatigue by emphasizing the importance
of spatial information and time dependence of EEGs. Yuan
et al. [41] proposed an end-to-end multi-view deep learning
framework to automatically detect epileptic seizures in EEG
signals. Li et al. [26] tried to incorporate transfer learning
into the construction of convolutional neural networks and
successfully applied the model to the clinical diagnosis of mild
depression. Dong et al. [12] used a rectified linear unit (ReLU)
activation function and a mixed neural network of LSTM
on time-frequency-domain features to classify sleep stages.
Lawhern et al. [24] proposed a compact full convolutional
network as the EEG-specific model (EEGNet) and applied it
to four different brain-machine interface classification tasks.
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Figure 1: Structural illustration of the proposed deep framework.

Zhang et al. [42] proposed a cascaded and parallel convolu-
tion recurrent neural network model to accurately identify
human expected motion instructions by effectively learning
the spatiotemporal representation of the original EEG signal.
Tan et al. [33] converted EEG data into EEG-based video
and optical flow information, classified them by convolution
neural network and recurrent neural network (RNN), and
established an effective rehabilitation support system based
on BCI.

Multimedia data, which contain a large amount of content
information and rich visual characteristics, are considered
to be a very suitable stimuli material and widely used in
the acquisition and analysis of EEG signals [21, 30, 31]. Re-
searchers tried to identify and classify the content information
of multimedia data viewed by users through the analysis of
EEG signals [9, 28, 36]. Spampinato et al. [31], used LSTM
network to learn an EEG data representation based on image
stimuli and constructed a mapping relationship from natural
image features to EEG representation. Finally, they used
the new representation of EEG signals for classification of
natural images. Compared with traditional methods, these
deep learning-based approaches have achieved outstanding
classification results. Recent studies have shown that it is
possible to reconstruct multimedia content information itself
by mining EEG data. Kavasidis et al. [21] proposed a method
for reconstructing visual stimuli content information through
EEGs. By using a variable-valued autoencoder (VAE) and
generative adversarial networks (GANSs), they found that
EEG data contain patterns related to visual content, and the
content can be used to generate images that are semantically
consistent with the input visual stimuli. While these meth-
ods have demonstrated the capability of using deep learning
framework for EEG-based image classification, the original
EEG data or the extracted time-frequency features based on
signal analysis algorithms are often used as the input, and
some characteristics of human brains have not been seriously
considered, such as hemispheric lateralization, the spatial
and dynamic correlations in the EEG data sequences have
not been jointly considered, and the classification accuracy

1297

achieved to date by Spampinato et al. was 82.9% [31], leaving
significant space for further research and improvement.

3 METHODOLOGY

Given the extensive survey on existing research in the previ-
ous section, we propose a region-dependent and bi-directional
attention-driven LSTM framework for automated classifica-
tions of brain activities evoked by natural images. Specifically,
our approach consists of three stages, i.e., the region-level
information extraction stage, the feature encoding stage, and
the classification stage. A structural illustration is given in
Fig. 1.

3.1 The Lateralization Effect

Although extensive research in neuroscience has revealed
that, in some cognitive processes, the neural loci are largely
lateralized to one hemisphere or the other, no existing re-
search for EEG-based classification of brain activities evoked
by images has ever attempted to exploit this concept dur-
ing the development of deep learning models. For channel
i, the raw EEG signal denoted as E = [e;]'<", is regarded
as input to the region-level information extraction, where
i € [1, lep, = 128] is the index for channels, and ., is the
number of channels. To achieve the desired lateralization
effect, we further split the EEG data into three groups, in-
cluding the left hemisphere, the right hemisphere, and the
middle part. By denoting the left hemisphere group, the right
hemisphere group, and the middle group as, E[l], E[T], and
E[", respectively, each channel e; can be linked to one group
based on the corresponding electrode physical location. Each
channel in the left hemisphere group has a corresponding
channel in the right hemisphere group, and as a result, the
difference, d;, can be calculated according to the following
equation:

d; =El — El (1)

where (EE-”, EE-T]> is regarded as the corresponding pair.
j € [1, lg] is the index for the left hemisphere group, the

right hemisphere group, and the difference, and [, is the
number of channels linked to the left hemisphere group or
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Figure 2: Structural illustration of the proposed A-
LSTM cell.

the right hemisphere group. The output of the region-level
information extraction stage is obtained when the difference,
D= [dj];gzl, is combined with the middle group, EI™, into
one variable, S, and then this output is passed to the sequence
layer as an input according to the following equation:

(2)

3.2 The Proposed Attentional-LSTM and
RA-BiLSTM

The attention mechanism was firstly proposed by Bahdanau
et al. in machine translation [3], which is utilized to select
the reference words in sentences. Its further applications
include syntactic constituency parsing by Vinyals et al. [35],
natural language question answering by Sukhbaatar et al.
[32], and image question answering by Yang et al. [40]. The
concept of “attention” has obtained popularity in training
neural networks, and it can work collaboratively with different
modalities, e.g., the attention mechanism is used to select the
relevant image regions when generating words in the captions
by Xu et al. [39]. Recent progress on self-attention mechanism
is represented by computing vector-space descriptions and
characterizations for both input and output, and improved
results have been reported [11].

To reward those channels that provide more clues for
correct classification and analysis of the EEG sequences,
we introduce a new attention-driven LSTM for EEG-based
classification of brain activities evoked by natural images. In
details, we propose a channel-level attention gate and use
this gate to measure the level of importance for each channel
and hence optimize their collective contributions for brain
activity analysis.

The feature encoding stage extracts the EEG descriptions
from the region-level information via RA-BiLSTM network.
The RA-BILSTM learns long-term dependencies across dif-
ferent timing steps of the sequence data. It not only solves
the vanishing gradient problem, which appears in recurrent
neural network (RNN) through the forget gate and the up-
date gate, but also measures and seizes the importance of the
information from different channels through the attention
gate and catches the dynamic correlations inside the EEG
sequences. In contrast to the unidirectional LSTM, the RA-
BiLSTM calculates the output y* at any time ¢ by taking
information from both the earlier and the later states inside
the sequences.

S = [DT E[’"]T]
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Figure 3: Structural illustration of the proposed soft
attention gate, where the input is s*, and the connec-
tion with the same color means that they share the
same parameters.

The structure of the layer in RA-BiLSTM, including a
forward A-LSTM layer and a backward A-LSTM layer, is
illustrated in Fig. 1. As seen, the forward layer output se-
quence, En, is iteratively calculated using the inputs in a
sequence from time 1 to time ¢ — 1, while the backward layer
output sequence, at, is calculated using the inputs from the
end of sequence to time ¢ 4 1. Specifically, given the input s
from all channels at time ¢, the attention gate I'Y,, the update
gate I',, the forget gate I'}, and the output gate I'Y, which
are represented by colorful boxes in the A-LSTM cell in Fig.
2, can be calculated from the the region-level information

S = [st}ls where [s is the length of the sequence, and

t=1’
the previous layer output a‘~' according to the following
equation:
It w, U, 0 ot b,
I 0 Uy W b
fl = f f t—1 !
v =9 o e owu |\ ) T e @
It 0 U, W, . b,

where, for k € {a, f,u, 0}, Wy, is the weight matrix mapping
the layer input to the four gates, Uy is the weight matrix
connecting the previous cell output state to the four gates,
and by is the bias vector. The function g() is designed as
ReLU activation function for I}, and element-wise sigmoid for
I, Tt and I'}, respectively, and the state of the attention
gate I'L is fed through the three gates.
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To optimize the process of adding the attention-driven
mechanism, we propose two different versions of attention
mechanism, soft attention gate and hard attention gate. For
the soft attention gate, as shown in Fig. 3, the input EEG
signals of different channels are fully connected with the
nodes in the gate. As a result, the size of W depends on
the number of channels and the number of nodes in the
attention gate. For the hard attention gate, we prune the
connections in attention gate based on the physical locations
of the electrodes. In other words, the input channels are split
into m nearest-neighbor groups according to their physical
locations, and the channels in each group are fully connected
with a separate node in the attention gate. In this way, W,
in (3) will be changed to a@ W, as given in the following
equation (4), where « is the pruning parameter. Alpha is 1
if there exists a connection between the channel and their
corresponding node in the attention gate. Otherwise, it is 0.

x'=g(s" a Wy +2a""' U, +b,) (4)

Based on the results of (3), the cell output state ¢’ and the
layer output a’ (both the forward and the backward outputs)
can be calculated from the state of the attention gate I';, and
the previous layer output a‘~!, details of which are given
below:

c' =T xc" '+ * (tanh(Uca"™' + W.TL +be))  (5)
a' =T! xtanh(c") (6)
where W_ is the weight matrix mapping the layer input to
the candidate for replacing the memory cell. While U, is the
weight matrix connecting the previous cell output state to
the candidate for replacing the memory cell, b, is the bias
vector. The function tanh() indicates a hyperbolic tangent.
The final output of a RA-BILSTM layer is a vector of
all outputs, represented by Y = [yt]i*;l. At each time of
iteration t, y* can be calculated according to (7). Taking
the EEG-based object classification problem as an example,
only the last element of the output vector, y's, is taking into
account when making the predictions.

yt =0y(Wy [?tv <at] +by) (7)

where W, is the weight matrix from the RA-BiLSTM hidden
layer to the output layer, b, is the bias vector of the output
layer and oy () is the sigmoid activation function of the output
layer.

The classification stage takes the EEG descriptions from
the RA-BIiLSTM network as an input and returns the pre-
diction as an output, where a softmax classifier is adopted.

4 EXPERIMENTS

To evaluate our proposed RA-BiLSTM, we have carried out
extensive experiments which are arranged in three stages.
In the first stage, the EEG-based classification performance
of our proposed deep learning framework is assessed. In the
second stage, we visualize the weights in attention gate and
analyze the contribution from different channels and regions.
In the third stage, we study the relationships between the
neural activations and the specific emotional states.
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Table 1: The classification performance comparisons
among our proposed RA-BiLSTM, the RNN-based
method, siamese network, and the RS-LDA.

Models Accuracy
Proposed RA-BiLSTM  98.4%
RNN-based model [31] 82.9%
Siamese network [29] 93.7%
RS-LDA [20] 13.0%

4.1 Experimental Settings

For the convenience of comparatively analyzing the experi-
mental results against the existing efforts, we adopt ImageNet-
EEG, which is a publicly available EEG dataset for brain
imaging classification proposed by Spampinato et al. [31]. For
benchmarking purposes, the proposed framework is compared
with the EEG-based object classification methods [29, 31],
which are the most recent deep learning methods on the same
dataset and the baseline method: representational similarity
based linear discriminant analysis (RS-LDA) [20].

For our method, concerning parameters for the attentional-
LSTM for the hard attention gate, we split the input channels
to m = 17 nearest-neighbor groups according to the physical
locations, each group contains 4 channels, for the soft atten-
tion gate, we have assigned the number of nodes to 68. The
iteration limit is set to 2500, and the batch size is set to 440
for the feature encoding stage of the RA-BiLSTM.

4.2 Image-Stimulated Brain Activity
Classification

In the first stage of experiments, the effectiveness of our
RA-BiLSTM deep network is validated for EEG-based object
classification. All the experimental setting follows that of the
existing work [31].

Table 1 summarizes the experimental results in terms of the
classification precisions for our proposed RA-BiLSTM deep
network, the most recent deep learning methods, including
the state-of-the-art RNN-based method [31] and siamese
network [29], and the RS-LDA method [20]. As seen, while
the precision rate accomplished by our proposed RA-BiLL.STM
deep network is 98.4%, the existing state-of-the-art, siamese
network, and the RS-LDA compared are 82.9%, 93.7%, and
13.0%, respectively.

To quantify and analyze the contribution of each stage
designed in our proposed RA-BiLSTM deep network, further
experiments are conducted to explore the effectiveness of
different configurations made by individual stages. At the
feature encoding stage, individual elements considered in-
clude: (i) selection of different channel-based attention gate
structures, including soft attention gate and the hard atten-
tion gate; (ii) choice of different feature-encoding techniques,
including unidirectional LSTM, bi-directional LSTM, and
bi-directional attentional-LSTM (A-BiLSTM). In the hard
attention gate, two designs have been tested, including the
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Table 2: Comparative assessment of the proposed framework upon different configurations.

Framework
Configurations 1 2 3 4 5
Lateralization effect v v v v v
Soft attention gate v
Hard attention gate w/ shared parameters v
Hard attention gate w/o shared parameters v
LSTM v
BiLSTM v
A-BiLSTM v v v

Accuracy %

92.9 97.0 984 98.0 97.9

hard attention gate without sharing the learnable parame-
ters and the hard attention gate with sharing the learnable
parameters. While the hard attention gate without sharing
the learnable parameters utilizes a separate network for each
group of channels, the hard attention gate sharing the learn-
able parameters utilizes the same network for all groups.

Table 2 summarizes the experimental results in classifica-
tion precision rates with all the various configurations, from
which we can notice and reach a number of conclusions that
can be described as follows:

First, the performance of utilizing the lateralization effect
plus the attention gate is always better than utilizing the
lateralization effect alone at the stage of the region-level
information extraction. These results are presented by config-
urations 2 —5 in Table 2. If the bi-directional LSTM is chosen
as the feature encoder, the best performance accomplished
by the lateralization effect alone is 97.0% by configuration 2,
and the best performance accomplished by combining both
the lateralization effect and the attention gate (RA-BiLSTM)
is 98.4% by configuration 3.

Second, the performance of utilizing the soft attention gate
is always better than utilizing the hard attention gate at the
feature extraction stage in A-LSTM. If the A-BiLSTM is
chosen as the feature encoder, the best performance accom-
plished by the hard attention gate is 98.0% by configuration 5,
and the best performance accomplished by the soft attention
gate is 98.4% configuration 3.

Third, the performance of utilizing the hard attention gate
in sharing the learnable parameters is better than utilizing
the hard attention gate without sharing the learnable pa-
rameters at the feature extraction stage in A-LSTM. If the
A-BiLSTM is chosen as the feature encoder, the best per-
formance accomplished by the hard attention gate without
sharing the learnable parameters is 97.9% by configuration 5,
and the best performance accomplished by the hard attention
gate with sharing of the learnable parameters is 98.0% by
configuration 4.

Fourth, the performance of bi-directional attentional-LSTM
is always better than that of the unidirectional LSTM as the
feature encoder in the feature extraction stage. These results
are presented by configurations 1 and 3 in Table 2. While the
best performance accomplished by the unidirectional LSTM
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is 92.9% by configuration 1, the best performance accom-
plished by the bi-directional attentional-LSTM is 94.8% by
configuration 3.

Fifth, the performance of bi-directional attentional-LSTM
(A-BIiLSTM) is always better than that of the bi-directional
LSTM (BiLSTM) as the feature encoder in the feature extrac-
tion stage. These results are presented by configurations 2 and
3 in Table 2. While the best performance accomplished by the
BiLSTM is 97.0% by configuration 1, the best performance
accomplished by the A-BiLSTM is 94.8% by configuration 3.

4.3 Visualization of the Attention Weights

To further enhance the revelation of the roles played by
attention weights, we in this section visualize the connection
weights of the attention gate and analyze the contribution
of different channels and regions. In Fig. 4(a), we provide
the visualization of the connection weights between the input
channels and the nodes in soft attention gate. From this figure,
we can see that some of channels are more “active” than
others. It means the weights of these channels are far away
from 0. It also means these channels play more important
roles in the feature extraction and the final classification
process. In Fig. 4(b), we give the sum of the absolute value
of the connection weights from each channel, and we pick out
the first ten channels with the largest values and show the
electrode physical location of these channels as red circles
in Fig. 4(c). The larger the circle is, the greater the weight
is, and thus the value of the weight can be used to evaluate
the importance of the channel. The top ten channels are
P1, CCP3h, FC3, PPO5h, CP3, C1, FFT9h, F1, PO9, and
FCC1h.

Similarly, we can use the same method to analyze the
connection weights of the attention gate in hard attention
gates. As described before, we split the input channels to
nearest-neighbor groups according to the physical locations
in hard attention gate, and the channels in each group are
fully connected with a separate node in attention gate. Thus,
our analysis is relied on each group. We show the first four
groups with the largest values of connection weights in Fig.
4(d).

As seen, the most important locations selected by soft
attention gate and hard attention gate are not identical. But
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Figure 4: (a) Attention weights map. (b) The sum of the absolute value of the connection weights from each
channel. (c) Electrodes physical location of the top ten channels. (d) Electrodes physical location of the top

four regions.

we can still find that some channels are selected out by both
of them. For example, the absolute value of the weight in
channel CP3 is large, thus it is popped out from soft atten-
tion gate, and it is also included in the four most important
region groups obtained by using the hard attention gate. The
similar situation happened in P1. The object recognition is a
complex task and involves several different areas of the brain.
In principle, the frontal lobe is involved in memory encoding
during incidental learning and then later maintaining and
retrieving semantic memories [38]. In the soft attention gate,
three channels are selected in this region. According to the
timecourse analysis of electrophysiological correlates of object
recognition [19], there are two distinct types of components
in the event-related potential recorded during the catego-
rization of natural images, examples of which indicate that
the first peak is a frontal positivity, and the second peak
is a central positivity, and this second peak could be some
kind of top-down mechanism in object recognition. From the
selected channels of the soft attention gate and the region
groups of the hard attention gate, we can find that central
electrodes are selected out. These theoretically prove that,
as a machine learning structure, attention gate is capable
of grasping important information of human brains in the
process of object recognition.

After obtaining the importance of different channels based
on the visualization results of the attention gate, we seek to
explore the influence of different number of channels upon
the classification accuracy. The results are shown in Fig. 5.
Our original setting is referred to as RA-BiLSTM. The set-
ting with the ten most important channels is referred to
as RA-BiLSTM-10, the setting with the 34 most important
channels is referred to as RA-BiLSTM-34, whilst the set-
ting with the four most important regions is referred to as
RA-BiLSTM-4R. As seen in Fig. 5, the precision rate accom-
plished by RA-BiLSTM, RA-BiLSTM-10, RA-BiLSTM-34,
and RA-BILSTM-4R are 98.4%, 94.9%, 97.2%, and 93.2%,
respectively. These results tell us that the proposed attention
gate has a good potential for feature selection. Even if we
remove some unimportant channels based on weights, it will
not have a big impact on the final results.
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98.40%
93.20% = RA-BiLSTM-10
= RA-BiLSTM-34
97.20% RA-BIiLSTM-4R
RA-BiLSTM
94.90%
90.00% 95.00% 100.00%

Figure 5: Comparative assessment of the proposed
framework upon different configurations of the at-
tention gate.

4.4 Case Study of The Neural Activations
and Emotions

Unlike most of the existing EEG datasets that only incor-
porate less than 10 classes, ImageNet-EEG [31] contains 40
classes, and most of them are regular objects or animals. Thus,
for this dataset, we are not satisfied with just introducing
the novel deep learning framework with good classification
results. Further, we attempt to examine the connections be-
tween the neural activations and the specific emotional states.
The EEG data in ImageNet-EEG just contains the Beta
and Gamma bands. From the existing work, the emotional
processing enhanced Gamma band powers at frontal area as
compared to processing neutral pictures [27], and the signal
from Gamma band is suitable for EEG-based emotion classi-
fication [25]. Thus, all experiments provided here are focused
on the signals from Gamma band.

This dataset includes 40 categories, including “dog”, “cat”,
“butterfly”, “sorrel”, “capuchin”, “elephant”, “panda”, “fish”,
“airliner”, “broom”, “canoe”, “phone”, “mug”, “convertible”,
“computer”, “watch”, “guitar”, “locomotive”, “espresso”,
“chair”, “golf”’, “piano”, “iron”, “jack”, “mailbag”, “missile”,
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Figure 6: Scalp distribution of the average energy at Gamma frequency sub-band for all participants and
sessions of the three categories: “gun”, “phone”, and “panda”.

“mitten”, “bike”, “tent”, “pajama’, “parachute”, “pool”, “ra-
dio”, “camera”, “gun”, “shoe”, “banana”, “pizza’, “daisy”,
and “bolete” (fungus). Each category contains 50 images
with 300 EEG signals for the six subjects. In the classes of
the dataset, the class “gun” is a category that could cause
negative emotions. Most of other classes are thought as typi-
cally neutral, such as “phone”, “watch”, “bike”, “shoe”. Fig.
6 demonstrates the average energy distribution in Gamma
band of the “gun”, “phone”, and “panda” categories. From
this figure we can see that an increase of the average relative
energy in the prefrontal area during the period of the images
from the category “gun” is observed as compared to that
from the categories of “phone” and “panda’”. These results
are consistent with the discoveries reported by [10, 16], which
show that neural signatures associated with positive, neutral
and negative emotions do exist.

5 CONCLUSIONS

Following recent efforts via directly using multimedia to stim-
ulate brain activities towards brain image classification, we
propose in this paper a region-dependent and attention-driven
bi-directional LSTM deep learning approach for EEG-based
classification of brain activities evoked by natural images.
Our proposed framework provides an improved solution for
the problem that, given an image used to stimulate brain ac-
tivities, we should be able to identify which class the stimuli
image comes from by analyzing the EEG signals. The region-
level information is extracted to preserve and emphasize the
hemispheric lateralization for neural functions or cognitive
processes of human brains. In addition, a channel-level at-
tention mechanism is integrated into our new framework to
measure and seize the importance of different EEG channels,
and a RA-BiLSTM is used to capture the dynamic correla-
tions hidden in the EEG sequences. Extensive experiments
on ImageNet-EEG, the most challenging EEG dataset for
brain activity classifications, validate that our framework out-
performs the existing state-of-the-arts under various contexts
and experimental set ups. Further, our research has produced
substantial evidences to support that data estimated straight-
forwardly from human minds could enable machine learning
models to make better and more human-like understandings.
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Finally, further research can be identified as: (i) applying
our deep learning framework for other EEG-based content
understanding or pattern analysis tasks; (ii) reconstructing
the multimedia content information through the proposed
EEG representations.
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