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Abstract

As a fundamental preprocessing of various multimedia applications, object

proposal aims to detect the candidate windows possibly containing arbitrary

objects in images with two typical strategies, window scoring and grouping.

In this paper, we first analyze the feasibility of improving object proposal

performance by integrating window scoring and grouping strategies. Then, we

propose a novel object proposal method for RGB-D images, named elastic edge

boxes. The initial bounding boxes of candidate object regions are efficiently

generated by edge boxes, and further adjusted by grouping the super-pixels

within elastic range to obtain more accurate candidate windows. To validate

the proposed method, we construct the largest RGB-D image data set NJU1800

for object proposal with balanced object number distribution. The experimental

results show that our method can effectively and efficiently generate the

candidate windows of object regions and it outperforms the state-of-the-art

methods considering both accuracy and efficiency.
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1. Introduction

Object proposal aims to detect candidate image windows possibly containing

category-independent objects in a given image [1]. Compared to the renowned

“dense sampling” paradigm [2], object proposal can provide content-aware

candidate windows, i.e., the number of candidate windows generated by object5

proposal will not linearly increase with the growth of image size while retaining

high coverage of image content. Obviously, it is beneficial to reduce the

computational cost and difficulty of the subsequent processing. Hence, object

proposal is widely used as a fundamental preprocessing of various multimedia

applications, such as object detection [3, 4] and classification [5, 6], target10

tracking [7, 8], saliency analysis [9, 10], object recognition [11], social media

mining [12, 13] and information retrieval [14].

Typically served as a preprocessing procedure, effective object proposal

technique needs to satisfy the following requirements: Firstly, the proposed

candidate windows should cover all or most objects in images, in order to15

avoid serious image content loss. Secondly, the number of candidate windows

should be controlled in a limited range to reduce the computational cost of the

subsequent processing. Thirdly, the candidate windows should cover the objects

with high accuracy, which is usually measured by the intersection over union

(IoU) of the candidate windows and the bounding boxes of objects, for high20

IoU is important to object detection and other applications [15]. Finally, the

generation of candidate windows should be efficient, which will benefit the usage

of object proposal in realtime or large-scale applications.

Though object proposal has been extensively studied in the recent years

[16, 17], current methods still suffer two problems. One problem is that current25

object proposal methods mainly focus on the effect of color cue, which is not

sufficient to a task as challenging as object proposal since it aims to extract

the common properties of the objects of all categories to distinguish them from

background [15]. It requires to fully explore the potentialities of different cues

besides color, such as depth. In fact, depth has been used as the complement30
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to color in numerous object-level applications, including object segmentation

[18, 19], salient object detection [20, 21], object retrieval [22, 23] and object

recognition [24, 25]. Xu et al. firstly combined color and depth cues in object

proposal [26], but they ignored the quality difference between the acquired color

and depth information, i.e., depth cue usually has lower quality than color for35

the limitation of the existing capture devices and estimation algorithms. It

means that depth cue should be dealt with in a different way to color cue when

combining them together [27].

The other problem is that the existing object proposal methods usually only

satisfy partial requirements of object proposal instead of all, which limits their40

usage in multimedia applications. Generally speaking, the typical strategies

for addressing object proposal problem can be classified into two categories:

window scoring [1, 28] and grouping [16, 29]. Both these two strategies focus

on the former two requirements, i.e., covering as many objects in images as

possible with a limited number of candidate windows, but they have distinct45

performance on the latter two requirements. Window scoring based methods

usually have high efficiency for only requiring once scoring for each sampled

box, but they are easy to fail in providing the candidate windows with high

accuracy for the quantization error in sampling. In contrast, grouping based

methods can generate the candidate windows with high accuracy, but they are50

usually time consuming for image segment merging. An interesting idea is to

integrate these two strategies to obtain both high accuracy and efficiency, but

the related research is still in embryonic stage and limited in RGB images [30].

In this paper, we propose a novel object proposal method, named elastic

edge boxes, by integrating window scoring and grouping strategies and exploring55

both color and depth cues in RGB-D images. Figure 1 shows an overview of

the proposed method. For each RGB-D image (Figure 1(a)), we first utilize

window scoring strategy to identify the potential object locations with boxes

according to edge cue (Figure 1(b)). Then, we represent the RGB-D image with

super-pixels and select the undetermined super-pixels for each box (Figure 1(c)).60

Finally, we adjust the boundary of each box by applying grouping strategy on
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Figure 1: An overview of the proposed method. (a) RGB-D image. (b) Initial bounding boxes

(orange boxes) by window scoring strategy and ground truths (red boxes). (c) Super-pixel

representation. (d) Box boundary adjustment by grouping strategy. (e) Final bounding boxes

(green and orange boxes) and ground truths (red boxes).

the undetermined super-pixels (Figure 1(d)) and generate the final candidate

windows (Figure 1(e)). To the best of our knowledge, it is the first object

proposal method integrating window scoring and grouping strategies for RGB-

D images. To validate the performance of the proposed method, we construct65

the largest RGB-D image data set for object proposal, named NJU1800, on

the base of stereo objectness data set [26], which provides a comprehensive

and challenging benchmark for object proposal evaluation. The experimental

results show that our method can generate the candidate windows with accurate

locations under different accuracy, and it outperforms the existing methods70

considering both accuracy and efficiency. Some preliminary results of our

method were presented in [31]. In this paper, we additionally analyze the

feasibility of integrating window scoring and grouping strategies, and extend

box boundary adjustment from unidirectional adjustment in single layer super-

pixels to bidirectional adjustment in multiple layer super-pixels. Moreover, we75

further extend the previously proposed data set NJU1500 to NJU1800, in which

300 images with one object are supplemented, and utilize it to validate the

performance of our method and compare it with the state-of-the-art methods.

Our major contribution can be summarized as follows:
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• We propose a novel object proposal method for RGB-D images by fully80

exploring the potentialities of both color and depth cues in different

ways, which can outperforms the state-of-the-art methods considering

both accuracy and efficiency.

• We first analyze the feasibility of integrating window scoring and grouping

strategies in object proposal, and provide the upper-bound of the inte-85

grated strategies. It shows that it is possible to obtain a trade-off between

accuracy and efficiency in object proposal by integrating window scoring

and grouping strategies.

• We construct the largest RGB-D image data set NJU1800 for object

proposal, with balanced object number distribution and high average90

object number per image to provide comprehensive and challenging

evaluation. It can be used as a benchmark for the future research.

The rest of the paper is organized as follows. Section 2 provides a brief

review of the related work. Section 3 analyzes the feasibility of integrating

window scoring and grouping strategies in object proposal. The details of the95

proposed method is presented in Section 4, and its performance evaluation is

shown in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

The strategies of the existing object proposal methods can be roughly

classified into two categories: window scoring and grouping.100

Window scoring. Window scoring based methods sample a quantity

of boxes in each image, score these sampled boxes based on the pre-defined

features to measure the likelihood of each box containing an object, and treat

the sampled boxes with high scores as candidate windows. Alexe et al. [1]

first propose an objectness measurement based on a variety of appearance and105

geometry properties. Rahtu et al. [32] use the improved scoring algorithm of

[1] on the randomly sampled boxes and the bounding boxes of single, two and
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three adjacent super-pixels. Zhang et al. [33] apply classifiers on each scale and

aspect ratio and rank the classification results to generate proposals. Cheng

et al. [17] utilize binarized normed gradient by training a linear classifier over110

edge features. Zitnick et al. [28] use edge cue to guide window refinement,

which can be specially optimized for different IoU thresholds. Xu et al. [26]

explore the effectiveness of depth cue in handling complex scenes. Liu et al. [27]

extend EdgeBoxes method by using depth-aware layered edges to avoid mixing

the edges from the objects and background. Overall, window scoring based115

methods can efficiently generate the bounding boxes as proposal results, but

their performance under high IoU is usually limited.

Grouping. Grouping based methods generate a number of image segments,

merge the similar segments, and produce the bounding boxes of the merged

segments as candidate windows. Carreira et al. [16] use constrained parametric120

mincuts in merging by several different seeds and multiple features. Humayun

et al. [34] improve it by applying multiple graph cut segmentations and using

edge detectors. Uijlings et al. [35] propose a typical grouping based method,

selective search, which greedily merges super-pixels to generate proposals with

feature similarity instead of learning. Rantalankila et al. [36] propose a125

similar merging strategy to selective search with different features in similarity

measurement. Xiao et al. [37] extend selective search by specializing merging

in high-complexity scenarios, and Wang et al. [38] improve it with multi-

branch hierarchical segmentation. Manen et al. [39] use randomised super-pixel

connectivity graph during merging with the learned probabilities. Long et al.130

[40] utilize bottom-up merging to generate initial object candidates, and train

a supervised descent model to greedily adjust the boxes. Arbelaez et al. [29]

perform hierarchical segmentation and multiscale combinatorial grouping with

a speed-up algorithm. Krähenbühl et al. [41] judiciously place object-like seeds

and identify critical level sets in geodesic distance transforms as object proposal135

results. Overall, grouping based methods can generate accurate bounding boxes

as well as object boundaries, especially under high IoU, but they are usually

inefficient due to bottom-up merging.
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Integration of window scoring and grouping. It is interesting

to integrate window scoring and grouping strategies together, for example,140

generating the initial candidate windows based on window scoring and further

adjusting the boundaries of these candidate windows by grouping. Chen et

al. [30] first propose this strategy for object proposal to achieve accurate

bounding boxes while retaining high efficiency, but their method only focuses

on RGB images and completely ignores depth cue. Our previous work [31] first145

applies this strategy on RGB-D images, but it is limited in one layer super-pixel

extension in boundary adjustment.

3. Feasibility Analysis

A critical question is whether it is feasible to improve the performance of

object proposal by integrating window scoring and grouping strategies, i.e.,150

whether the IoUs of the candidate windows generated based on window scoring

and the bounding boxes of objects will increase while adjusting the boundaries

of these candidate windows by adapting to the boundaries of the related super-

pixels. If so, what is the potentiality of performance improvement under the

best case? For various window scoring and grouping based methods may be155

utilized, it is not practicable to observe the results of different window scoring

based methods and further apply different boundary adjustment algorithms in

the grouping based methods. Instead, we analyze the upper bounds of window

scoring based methods and their boundary adjustment results to provide a

general answer of the above question, and treat the difference between these160

two upper bounds as the potential performance improvement.

Upper bound of window scoring based methods. In different windows

scoring based methods, various scoring algorithms are used to sort the sampled

boxes, and the number of the retained candidate windows may be changed under

different evaluation. Nevertheless, no matter which scoring algorithm is used165

and how many candidate windows are retained, the performance of the retained

candidate windows cannot exceed the one of all the sampled boxes when ignoring
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resampling of candidate windows, which are equal when the scoring algorithm

is optimal and the number of the retained candidate windows is sufficient. It

means the performance of all the sampled boxes can be treated as the upper170

bound of the performance of all the window scoring based methods initialized

with the same number of sampled boxes.

Upper bound of boundary adjustment. Similarly, we use the perfor-

mance of the boundary adjustment results of all the sampled boxes to represent

the upper bound of the boundary adjustment results of candidate windows175

generated by window scoring based methods. Theoretically, to a given object,

any sampled box can be adjusted by continuously adding and removing super-

pixels until match the bounding box of the object as much as possible. Hence,

the upper bound of the performance of boundary adjustment can be measured

by comparing the bounding boxes of objects and the most similar bounding180

boxes of super-pixel sets to them, i.e., these bounding boxes of super-pixel sets

have the highest IoU to their corresponding bounding boxes of objects.

To the bounding box bo of a given object and the bounding box of super-pixel

set b∗o with the highest IoU to bo, it is intuitive that their boundaries should be

as close as possible. We prove that the IoU of bo and b∗o increases when a side185

of b∗o gets close to the corresponding side of b∗o. Yet the increasing rates from

inside and outside of bo may be not same, i.e., the IoUs of bo and b∗o may be not

same when a side of b∗o inside or outside bo even with the same distance to the

corresponding side of bo. Meanwhile, the influences to IoU of four sides of b∗o are

not independent. More details can be found in Appendix. The optimal positions190

of b∗o’s sides inside bo is the boundary of the bounding box of all the super-pixels

inside bo. And the optimal position of b∗o’s sides outside bo is determined by

the retainment of all the super-pixels on the boundary of bo. Note here, to the

super-pixels only on one side of bo, we can simply retain the super-pixels which

lead to the closest boundary of b∗o to bo on each side. But to the super-pixels195

on more than one sides of bo, the retainment of each super-pixel will influence

several sides of b∗o, i.e., one side of b∗o may be closer to bo but another side of b∗o

may be farther when retaining a super-pixel. We should verify all the cases to
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obtain b∗o.

Unlimited boundary adjustment is too difficult to obtain optimal results and200

it completely ignores the effect of window scoring strategy. A more practicable

solution is slightly adjusting the boundaries of the initial boxes generated based

on window scoring, for example, only considering the retainment of super-pixels

on the boundaries of these initial boxes. The performance upper bound of

such “single layer” boundary adjustment can be measured by applying a similar205

approach as above on each initial box to each object and calculating the highest

IoU among the adjusted initial boxes for each object.

Figure 2 shows the results of feasibility analysis of integrating window scoring

and grouping strategies on PASCAL VOC 2007 test set, which includes 4,952

images. During the analysis, we utilize three sampling approaches, including210

uniform sampling, gaussian sampling and sliding window sampling. Uniform

sampling and gaussian sampling sample the box center position, log aspect ratio

and square root area uniformly and with Gaussian distribution, respectively.

And sliding window sampling uniformly samples the boxes with different box

sizes. By observing the existing object proposal methods using window scoring215

strategy, we choose three numbers of sampled boxes in our validation, which

are 5,000, 10,000 and 20,000. In Figure 2, “sampling” and “adjustment”

denote the performance before boundary adjustment and after single layer

adjustment, and “unlimited adjustment” denotes the performance of unlimited

adjustment. We can find that window scoring based methods cannot achieve220

satisfactory performance under high IoU, even assuming the scoring approach is

optimal. And simply increasing the number of sampled boxes cannot obviously

improve the performance of object proposal. In contrast, integrating boundary

adjustment can significantly increase the recall under high IoU, even only using

single layer boundary adjustment.225
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(a) (b)

(c)

unlimited adjustment

adjustment 20000

adjustment 10000

adjustment 5000

sampling 20000

sampling 10000

sampling 5000

Figure 2: Feasibility analysis of integrating window scoring and grouping strategies on

PASCAL VOC 2007. (a) Uniform sampling. (b) Gaussian sampling. (c) Sliding window

sampling.

4. Elastic Edge Boxes

4.1. Initial box generation

We first generate the initial boxes using window scoring strategy. In the

proposed approach, we specifically utilize edge boxes method [28], which can

efficiently detect the approximate locations of most objects by exploiting edge230

cue. Edge boxes method first obtains sparse edge map through structured edge

detector [42] and generates the sampled boxes with sliding window approach.

Then, it scores these sample boxes according to the number of contours

completely inside each box, which is highly indicative of the possibility of a
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sampled box including an object. The score of a sampled box bsk is defined as:235

score(bsk) =

∑
i ρk(ei)m̂i

2(wk + hk)η
−

∑
p∈bctk

mp

2(wctk + hctk )η
, (1)

where wk and hk are width and height of the sampled box bsk; bctk is a box centered

in bsk with the size of wctk ×hctk , which equal wk/2 and hk/2, respectively; η = 1.5

is a parameter to offset the bias of larger windows generally containing more

edges; mp represents the edge magnitude of each pixel and m̂i is obtained by

summing up edge magnitude of each pixel in the ith edge group ei enclosed by240

box bsk; ρk equals zero if ei overlaps the boundary of bsk. Finally, non-maximal

suppression is performed to decrease the number of sampled boxes, and the

pre-defined number of sample boxes with the highest scores will be selected as

initial boxes.

Though its performance under high IoU is barely satisfactory, edge boxes245

method can achieve high recall under low IoU. It means that the initial boxes

generated by edge boxes method provide the approximate locations of objects.

We can adjust these initial boxes to provide more accurate candidate windows

for object proposal.

4.2. Elastic range extension250

Based on the initial boxes generated by edge boxes method, we further

adjust their boundaries to generate the candidate windows with high accuracy.

Inspired by grouping strategy, we represent the images with super-pixels [43]

and utilize super-pixel as the basic operation unit in boundary adjustment, for

the advantages of super-pixel in describing object boundaries, handling depth255

map inaccuracy, and reducing computational cost.

A key problem in boundary adjustment is to determine the elastic range for

each initial box, i.e., the valid range for boundary adjustment. Obviously, too

small elastic range will limit the adjustment and prevent from providing accurate

candidate windows, while too large elastic range may cause high computational260

cost and reduce the effect of initial boxes.
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(a) (b) (c)

1 2 3 4

5 6 7 8

(d)

Figure 3: Example of boundary adjustment. (a) and (b) Color channel and depth channel

of RGB-D image. (c) Initial box (red box) and candidate window generated after boundary

adjustment (yellow box). (d) Detailed procedure of boundary adjustment, including inner

super-pixels (magenta), outer super-pixels (cyan) and elastic range (yellow super-pixels).

Assume an image is represented as a set of super-pixels S = {s1, . . . , sN}.

Given an initial box bk, we define Sbkin as a set of super-pixels which are

completely inside bk (magenta ones in Figure 3(d-1)), Sbkout as a set of super-

pixels which are completely outside bk (cyan ones in Figure 3(d-1)), and Sbke265

as a set of the rest super-pixels which are crossed by bk (yellow ones in Figure

3(d-1)). In our method, Sbke is used as the initial elastic range.

As shown in Figure 3(d-2) to Figure 3(d-8), to each super-pixel newly

grouped into Sbkin , we add its adjacent super-pixels in Sbkout into the elastic range

in next iteration. Note here, each super-pixel is only added into elastic range270

once at most. It means a super-pixel will not be added into elastic range again

if it was determined to be in Sbkout.

4.3. Iterative boundary adjustment

For the number of super-pixels in Sbkin and Sbkout are usually unbalanced, to

each super-pixel si in elastic range Sbke , we calculate its similarities to the same

numberm of its nearest super-pixels in Sbkin and Sbkout, respectively, and determine
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whether it should be grouped into Sbkin . The number of the nearest super-pixels

m equals 10 in our experiments to obtain a trade-off between determination

accuracy and computational cost. Here, we utilize both color cue and depth

cue of an RGB-D image, and define four decision parameters ϕcin, ϕdin, ϕcout and

ϕdout as follows:

ϕcin =
∑

sj∈Ŝ
bk
in,m

simc(si, sj), (2)

ϕdin =
∑

sj∈Ŝ
bk
in,m

simd(si, sj), (3)

ϕcout =
∑

sj∈Ŝ
bk
out,m

simc(si, sj), (4)

ϕdout =
∑

sj∈Ŝ
bk
out,m

simd(si, sj), (5)

where Ŝbkin,m and Ŝbkout,m denote the super-pixel sets with the nearest m super-

pixels to si in Sbkin and Sbkout, respectively; simc(si, sj) and simd(si, sj) are

calculated as follows:

simc(si, sj) = (1− disc(si, sj))exp(−diss(si, sj)), (6)

simd(si, sj) = (1− disd(si, sj))exp(−diss(si, sj)), (7)

where disc(, ) denotes the Euclidean distance of the average colors of two super-

pixels in HSV space; disd(, ) denotes the distance of the average depth of two275

super-pixels; diss(, ) denotes the spatial distance between the centers of two

super-pixels.

Based on the four parameters, we extend Sbkin by grouping the super-pixels

satisfying the following requirement:

Sbkin
∗

= Sbkin ∪
{
si ∈ Sbie | (ϕcin − ϕcout) > t and (ϕdin − ϕdout) > t

}
, (8)

where t equals to 0.01 in our experiments.

Once Sbkin is unchanged, we generate a bounding box b̃k of Sbkin (yellow box in

Figure 3(c)). We score the boundary adjustment results of all the initial boxes280
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Figure 4: Distribution of object number per image. (a) Stereo objectness data set. (b)

NJU1800 data set.

with Equation (1), and sort them with the initial boxes together. Finally, we

treat the boxes with the highest scores as object proposal results.

5. Experiments

5.1. Dataset construction

To validate the performance of our method, we extend the previously285

constructed RGB-D image data set NJU1500 to NJU1800, in which 300 RGB-D

images with one object are added.

Similar to NJU1500, NJU1800 is constructed based on the stereo objectness

data set [26]. Stereo objectness data set includes 1,032 stereo images with

the content of indoor and outdoor objects in real world and virtual objects in290

movies. However, with the analysis of stereo objectness data set, we find that it

has obvious unbalance in object number distribution. We divide the images in

stereo objectness data set into six groups according to their object numbers per

image, including 1, 2, 3, 4, 5, and 5+ (more than five), and count the number of

images belong to each group. Figure 4(a) shows the object number distribution295

in stereo objectness data set, in which nearly half of the images contain no more

than two objects and the average number of objects per image is only 2.98. For
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the object number per image influences the performance of object proposal, i.e.,

more objects per image leads to higher challenge in object proposal [44], such

object distribution makes the object proposal task on it less challenging.300

A primary idea to solve this problem is to construct a data set by randomly

sampling the real-world images. But it is difficult to construct a RGB-D image

data set for object proposal in such a way. For RGB-D images are not as

popular as RGB images, which are mainly from 3D movies and user capture, it

is hard to ensure the high coverage of the possible image sources. Meanwhile,305

to avoid high repetition in image content and extremely low quality of depth

information, the constructed data set usually has a limited size. It causes a data

set constructed by random sampling cannot represent the real distribution of

object number.

Hence, in the construction of NJU1800 data set, we keep balance in310

object number distribution among images, which can provide a comprehensive

benchmark for the robustness of object proposal methods to different object

number per image and more challenging evaluation with high average object

number per image. We remove a part of images with two objects, and

supplement the images containing one object or more than two objects. The315

selection of the images with two objects only depends on their identifier in

stereo objectness data set, and the images of large identifiers are removed.

As shown in Figure 4(b), 915 images are retained from the 1,032 images of

stereo objectness data set, and 885 images are supplemented. The supplemented

images are collected from several 3D movies and videos, and the depth maps are320

calculated with Sun’s optical flow method [45]. Similar to stereo objectness data

set construction, we annotate the ground truths of object locations according to

PASCAL VOC 2007 annotation guidelines. Five participants, including three

males and two females, are invited to annotate the object bounding boxes for

each supplementary image. The final constructed data set includes six groups325

with 300 images per group, and the average number of objects per image

increases from 2.98 to 3.68. Though the average object number is slightly

lower than the one on NJU1500, which equals 4.22, NJU1800 provides a more
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Figure 5: Examples of object proposal results generated by our method.

comprehensive benchmark for the RGB-D images with one object are popular.

5.2. Performance evaluation330

We validate the performance of our method on NJU1800 data set. All the

experiments are carried out on a computer with Intel i5 2.8GHz CPU and 8GB

memory. Figure 5 shows some examples of object proposal results generated by

our method. The best candidate windows to each ground truth within top 2,000

ones of each image are marked with green bounding boxes. We can find that335

our method can effectively handle the complex situations in object proposal,

such as small objects and occluded objects.

We also compare our method with the state-of-the-art object proposal

methods. We firstly compare our method with the typical methods for RGB

images, including binarized normed gradients (BING) [17], edge boxes (EB) [28],340

objectness (OBJ) [1], geodesic object proposal (GOP) [41], multiscale combi-
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natorial grouping (MCG) [29], selective search (SS) [45], multi-thresholding

straddling expansion of edge boxes (M-EB) and multiscale combinatorial

grouping (M-MCG) [30], to validate the effectiveness of depth cue in object

proposal. These compared methods with window scoring strategy, grouping345

strategy or integration of them can obtain excellent performance in object

proposal [15]. Then, we compare our method with the object proposal methods

for RGB-D images to illuminate the performance of our integration strategy.

For only one typical object proposal method is proposed for RGB-D images,

adaptive integration of depth and color (AIDC) [26], we extend some typical350

open-source object proposal methods for RGB images by combining color and

depth cues, including EB [28], OBJ [1], M-EB and M-MCG [30]. We also treat

AIDC [26] as an extension of BING [17] in comparison. Though attempting

to individually extend each method is beyond the scope of this paper, we try

to avoid too simple extension of these methods to cause unbias comparison,355

e.g., simply average the scores on color cue and depth cue. Without loss of

generality, we select the key step for each method, such as the structured edge

detection in EB, and integrate color cue and depth cue with equal weights in it.

We represent the extended methods with the superscript of ∗, e.g., EB∗ denotes

the extension of EB.360

Accuracy. We firstly validate the recall of all the methods under different

IoUs. Figure 6 and 7 show the comparison results with the methods for RGB

images and RGB-D images, respectively. The comparison is carried out on the

whole data set with three criteria, including the recall vs. proposal number

curves when IoU equals 0.8 (Figure 6(a) and 7(a)), the average recall (AR)365

vs. proposal number curve [15] (Figure 6(b) and 7(b)), and the recall vs. IoU

curve (Figure 6(c) and 7(c)). And Table 1 and 2 provide more details of the

comparison result, in which “#prop” denotes the proposal number (i.e., the

number of candidate windows), “0.8-DR” denotes the recall when IoU equals

0.8, and “AR” denotes the average recall.370

In comparison with the methods for RGB images, we can find that our

method outperforms all the existing methods when IoU is in range of [0.7,
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Figure 6: Comparison of our method with the methods for RGB images under different IoUs.

(a) Recall vs. proposal number curves when IoU equals 0.8. (b) Average recall vs. proposal

number curve. (c) Recall vs. IoU curve with 2,000 candidate windows.

Table 1: Comparison of our method and the methods for RGB images with different proposal

numbers under IoU=0.8 and average IoU.

Method Type
#prop=1000 #prop=1500 #prop=2000

0.8-DR AR 0.8-DR AR 0.8-DR AR

BING scoring 0.06 0.26 0.06 0.27 0.06 0.27

EB scoring 0.57 0.60 0.59 0.61 0.60 0.62

OBJ scoring 0.09 0.35 0.09 0.35 0.09 0.35

GOP grouping 0.44 0.53 0.50 0.57 0.54 0.59

MCG grouping 0.62 0.62 0.65 0.64 0.66 0.65

SS grouping 0.56 0.59 0.60 0.62 0.62 0.63

M-MCG grouping 0.63 0.61 0.66 0.63 0.68 0.65

M-EB integration 0.57 0.58 0.60 0.61 0.62 0.62

Ours integration 0.67 0.61 0.72 0.64 0.74 0.66

18



Figure 7: Comparison of our method with the methods for RGB-D images under different

IoUs. (a) Recall vs. proposal number curves when IoU equals 0.8. (b) Average recall vs.

proposal number curve. (c) Recall vs. IoU curve with 2,000 candidate windows.

Table 2: Comparison of our method and the methods for RGB-D images with different

proposal numbers under IoU=0.8 and average IoU.

Method Type
#prop=1000 #prop=1500 #prop=2000

0.8-DR AR 0.8-DR AR 0.8-DR AR

AIDC scoring 0.06 0.26 0.07 0.27 0.07 0.27

EB∗ scoring 0.60 0.61 0.61 0.62 0.61 0.62

OBJ∗ scoring 0.09 0.32 0.09 0.33 0.09 0.23

MCG∗ grouping 0.58 0.58 0.59 0.59 0.59 0.59

M∗-MCG grouping 0.62 0.61 0.66 0.64 0.68 0.66

M∗-EB integration 0.58 0.59 0.62 0.61 0.64 0.63

Ours integration 0.67 0.61 0.72 0.64 0.74 0.66

0.85] and slightly worse than GOP, MCG, SS, and M-MCG when IoU is larger

than 0.85, which all use grouping strategy and have low efficiency. Meanwhile,
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our method obtains similar performance on average recall to the best existing375

methods, such as MCG and M-MCG, whose running time is more than two

times of ours as shown in Table 5. It shows that integrating color and depth

cues is helpful to efficiently obtain high recall under high IoU requirement.

Similarly, in comparison with the methods for RGB-D images, our method

outperforms all the other methods under high IoU and most other methods380

on average recall. By further comparing the performance of the corresponding

methods for RGB images and RGB-D images in Figure 6 and 7 and Table 1

and 2, we can find that directly combining color cue and depth cue cannot

obviously improve proposal performance, such as EB vs. EB∗, and even cause

slight decrease, such as MCG vs. MCG∗, though we have tried to avoid the385

unbias caused by simple combination of color and depth cues in extension. It

shows that the integration strategy for color and depth cues in our method is

effective.

Figure 8 and 9 show some examples of object proposal results generated

by our method and other methods for RGB images and RGB-D images,390

respectively. In these examples, red boxes indicate the ground truths, green

boxes indicate the candidate windows generated by different methods, and blue

boxes indicate the missed ground truths under IoU=0.8 with 2,000 candidate

windows. It shows that our method can handle the images with complex

structures and inconspicuous objects, while other methods may miss partial395

or all the objects in object proposal.

Robustness to object number. We further analyze the performance of

our method and other methods on the images with different object numbers.

Though the influence of object number per image to object proposal perfor-

mance was mentioned in [44], it is not quantitatively evaluated. Table 3 and 4400

show the comparison results of the methods for RGB images and RGB-D images

on the recall under IoU=0.8 with 2,000 candidate windows, respectively. We can

find that the performance of all the methods generally declines when the object

number per image increases, which validates the influence of object number per

image to object proposal performance. The slight volatility in the declining405
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Table 3: Comparison of our method and the methods for RGB images on different object

numbers under IoU=0.8 with #prop=2000.

Method #obj=1 #obj=2 #obj=3 #obj=4 #obj=5 #obj=5+

BING 0.07 0.07 0.05 0.06 0.05 0.03

EB 0.77 0.68 0.68 0.58 0.50 0.45

OBJ 0.18 0.14 0.07 0.09 0.06 0.05

GOP 0.91 0.61 0.51 0.53 0.51 0.43

MCG 0.95 0.72 0.58 0.60 0.63 0.55

SS 0.97 0.67 0.58 0.57 0.53 0.48

M-MCG 0.97 0.73 0.60 0.60 0.63 0.54

M-EB 0.87 0.73 0.69 0.59 0.50 0.43

Ours 0.89 0.84 0.79 0.73 0.64 0.55

trend may be caused by other factors influencing object proposal performance,

such as the contrast of object and background. Compared to other methods, our

method obtains the highest recall when the object number per image is more

than one. To the methods obtain higher recall on the images with one object,

including SS, M-MCG and M∗-MCG, we can find their performance obviously410

declines 25% to 31% when the object number per image increases from one

to two, which is caused by their over-emphasis of the most salient object in

proposal. In contrast, the performance of our method only declines 6%, which

is much lower than the ones of the above methods. It shows that our method

is more robust in handling the images with different object numbers.415

Speed. We also compare the efficiency of all the methods. Table 5 and 6

present the running time of our method and the methods for RGB images and

RGB-D images, respectively. Though some methods require much less time

than our method in processing an image, such as BING and AIDC, they obtain

the worse performance. To the methods obtaining similar performance to our420

method, such as M-MCG and M∗-MCG, they require more than double running

time than our method.

The above experimental results validate the effectiveness of depth cue in
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Table 4: Comparison of our method and the methods for RGB-D images on different object

numbers under IoU=0.8 with #prop=2000.

Method #obj=1 #obj=2 #obj=3 #obj=4 #obj=5 #obj=5+

AIDC 0.08 0.08 0.06 0.06 0.05 0.04

EB∗ 0.80 0.72 0.66 0.58 0.49 0.43

OBJ∗ 0.21 0.10 0.08 0.06 0.06 0.04

MCG∗ 0.86 0.63 0.55 0.56 0.52 0.42

M∗-MCG 0.97 0.72 0.59 0.61 0.63 0.53

M∗-EB 0.90 0.74 0.69 0.59 0.49 0.43

Ours 0.89 0.84 0.79 0.73 0.64 0.55

Table 5: Comparison of our method and the methods for RGB images in running time.

Method Type Language Time (s)

BING window C++ 0.06

EB window C++ & Matlab 0.67

OBJ window C++ & Matlab 4.12

GOP grouping C++ & Matlab 7.24

MCG grouping C++ & Matlab 60.09

SS grouping C++ & Matlab 6.42

M-MCG grouping C++ & Matlab 60.40

M-EB integration C++ & Matlab 0.98

Ours integration C++ & Matlab 22.34

efficiently obtaining accurate candidate windows and illustrate the superiority

of our integration strategy of color and depth cues. It shows that our method425

can obtain balance between accuracy and efficiency in object proposal, which

satisfies all the requirements of object proposal better.

6. Conclusions

In this paper, we propose an object proposal method for RGB-D images

by integrating window scoring and grouping strategies. The method generates430

the initial boxes by an efficient edge-based window scoring method, and adjusts
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Table 6: Comparison of our method and the methods for RGB-D images in running time.

Method Type Language Time (s)

AIDC window C++ 0.08

EB∗ window C++ & Matlab 0.68

OBJ∗ window C++ & Matlab 4.19

MCG∗ grouping C++ & Matlab 60.13

M∗-MCG grouping C++ & Matlab 60.41

M∗-EB integration C++ & Matlab 0.99

Ours integration C++ & Matlab 22.34

the boundaries of the initial boxes by grouping the super-pixels in elastic range,

which improves proposal accuracy while retaining high efficiency. Moreover, the

effectiveness of depth cue is explored as well as color cue, which is beneficial for

handling the images with complex situations. The experiments show that our435

method can effectively and efficiently generate the candidate windows with high

IoU, which outperforms state-of-the-art object proposal methods considering

both accuracy and efficiency, and it is more robust to different object numbers

per image.

In the future, we will focus on improving the integration of window scoring440

and grouping strategies in object proposal, for example, clustering the initial

boxes by super-pixel representation to reduce the number of candidate windows.

We will also attempt to extend our work to object proposal on video, in order

to provide high accuracy proposals with acceptable efficiency.

Appendix445

As shown in Figure 10, bo (black box) is the bounding box of an object,

whose four vertexes are A, B, C, and D, and b′o (red box) is a box attempting

to match bo, whose four vertexes are A′, B′, C ′, and D′.

The IoU of bo and b′o can be calculated as follows:

IoUbob′o =
SAB∗C′D∗

SABCD + SA′B′C′D′ − SAB∗C′D∗
, (9)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 8: Examples of object proposal results with different methods for RGB images. (a)

Original images with ground truths. (b)-(j) Object proposal results of BING [17], EB [28],

OBJ [1], GOP [41], MCG [29], SS [45], M-EB [30], M-MCG [30] and our method.

where S denotes the area of the box with the corresponding four vertexes.450

Considering a side of b′o outside bo, e.g. A′B′, we move it towards the

corresponding side of bo. b′′o (blue box in Figure 10(a)) is the box after the

movement of side A′B′. The IoU of bo and b′′o can be calculated as follows:

IoUbob′′o =
SAB∗C′′D∗

SABCD + SA′′B′′C′′D′′ − SAB∗C′′D∗
. (10)

For SAB∗C′D∗ = SAB∗C′′D∗ and SA′B′C′D′ > SA′′B′′C′′D′′ , we can find that

IoUbob′′o > IoUbob′o . It means the closer an outside side of b′o to its corresponding455
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 9: Examples of object proposal results with different methods for RGB-D images.

(a) Original images with ground truths. (b)-(h) Object proposal results of AIDC [26], EB∗,

OBJ∗, MCG∗, M∗-EB, M∗-MCG, and our method.
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Figure 10: Influence of box side position to IoU. (a) Outside side. (b) Inside side.

side of bo, the larger IoU is.
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Similarly, considering a side of b′o inside bo, e.g. B′C ′, we move it towards

the corresponding side of bo. b
′′
o (blue box 10(b)) is the box after the movement

of side B′C ′. The IoU of bo and b′′o can be calculated as follows:

IoUbob′′o =
SAB∗∗C′′D∗

SABCD + SA′′B′′C′′D′′ − SAB∗∗C′′D∗

=
SAB∗∗C′′D∗

SABCD + SA′′A∗D∗D′′ + SA∗B′′C′′D∗ − SAB∗∗C′′D∗

=
1

SABCD+SA′′A∗D∗D′′
SAB∗∗C′′D∗

+ SA∗B′′C′′D∗
SAB∗∗C′′D∗

− 1
,

(11)

and we rewrite Equation (9) as follows:460

IoUbob′o =
SAB∗C′D∗

SABCD + SA′B′C′D′ − SAB∗C′D∗

=
SAB∗C′D∗

SABCD + SA′A∗D∗D′ + SA∗B′C′D∗ − SAB∗C′D∗

=
1

SABCD+SA′A∗D∗D′
SAB∗C′D∗

+ SA∗B′C′D∗
SAB∗C′D∗

− 1
.

(12)

For SA′A∗D∗D′ = SA′′A∗D∗D′′ , SAB∗C′D∗ < SAB∗∗C′′D∗ and SA∗B′C′D∗
SAB∗C′D∗

=

SA∗B′′C′′D∗
SAB∗∗C′′D∗

, we can find that IoUbob′′o > IoUbob′o . Note here, if side A′D′ is

inside bo, the above proof keeps correct by simply changing the signs of the

items SA′A∗D∗D′ and SA′′A∗D∗D′′ from “+′′ to “−′′. It means the closer an

inside side of b′o is to its corresponding side of bo, the larger IoU is.465

With the further analysis of Equation (9)-(12), we can find that the IoUs

may be different when a side of b′o inside and outside bo, even its distances to

the corresponding side of bo are same. Moreover, we can find that the positions

of other sides may influence IoU when considering the position of one side, i.e.,

different positions of other sides may cause different IoUs even the position of470

one side is determined. Therefore, if we attempt to obtain a box b′o with the

highest IoU with bo, we should consider all the four sides of b′o under both the

cases of inside and outside bo for IoU calculation.
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superpixels compared to state-of-the-art superpixel methods, IEEE Trans.

Pattern Anal. Mach. Intell. 34 (11) (2012) 2274–2282.

[44] J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z. Lin, X. Shen, B. Price,

R. Mech, Salient object subitizing, in: IEEE Conf. Computer Vis. Pattern595

Recognit., 2015, pp. 4045–4054.

[45] D. Sun, S. Roth, M. J. Black, Secrets of optical flow estimation and their

principles, in: IEEE Conf. Computer Vis. Pattern Recognit., 2010, pp.

2432–2439.

31


	Introduction
	Related Work
	Feasibility Analysis
	Elastic Edge Boxes
	Initial box generation
	Elastic range extension
	Iterative boundary adjustment

	Experiments
	Dataset construction
	Performance evaluation

	Conclusions

