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ABSTRACT 
Water reflection, a kind of typical imperfect reflection symmetry 
problem, plays an important role in image content analysis. How-
ever, existing techniques of symmetry recognition cannot recog-
nize water reflection images correctly because of the complex and 
various distortions caused by water wave. To address this difficul-
ty, we construct a novel feature space which is composed of mo-
tion blur invariant moments. Moreover, we propose an efficient 
detection algorithm to determine the reflection axis in images with 
water reflection. By experimenting on real image dataset with 
different tasks, the proposed techniques demonstrate impressive 
results in the water reflection image classification, the reflection 
axis detection, and the retrieval of the images with water reflec-
tion.   

Categories and Subject Descriptors 
I.4.9 [Computing Methodologies]: Dynamic Programming Based 
on Motion Blur invariant Moment -Applications 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Water reflection, imperfect symmetry, motion blur, moment invar-
iants, reflection axis detection. 

1. INTRODUCTION 
Reflection is the change in direction of a wavefront at an interface 
between two different media so that the wavefront returns into the 
medium from which it originated. As one kind of reflection, water 
reflection happened between the scenery and water attracts many 
artists and photographers. In natural image analysis, water reflec-
tion plays an important role. First, water reflection itself is an 
exciting natural landscape, so images with water reflection should 
be considered as one important category of natural images. Exper-
iments from psychology reveal that subjects give favorable ratings 
to the scene with reflective water [1]. Second, whether being 

aware of the existing of water reflection will greatly influence the 
further image analysis, such as image segmentation and object 
recognition. Figure 1(a) is an image with water reflection, and the 
correct segmentation result is shown in Figure 1 (b). However, 
most existing segmentation algorithms, for example, graph-based 
technique presented in [2], will partition the mountain and its 
reflection as one segment as shown in Figure 1 (c), if the existing 
of water reflection is not known previously. More importantly, it 
is difficult to recognize the object mountain according to the 
wrong segmentation. Obviously, the shape and the location infor-
mation in Figure 1 (c) will be helpless to detect the mountain. 
Figure 1 (d) is the color histogram of the mountain part in Figure 
1(a). Figure 1 (e) shows the color histogram of the mountain and 
the reflection. It is obvious that partitioning the object and the 
reflection as one part will distort the color feature for recognition.    

 
(a)   

                  
(b)                                              (c) 

                    
(d)                                               (e) 

Figure 1. Example of the influence from water reflection to 
image segmentation and object recognition. (a) is an example 
image with water reflection. (b) is the correct segmentation 
result. (c) is the actual segmentation using existing algorithms. 
(d) is the color histogram of the mountain. (e) is the color his-
togram of the mountain and the reflection.  
Although water reflection has been known as an exciting and fa-
vorable nature landscape, to our knowledge, no existing technique 
has been proposed to address water reflection image classification 
and only one paper [3] proposed to detect water reflection axis. 
But the flip invariant shape detector utilized in [3] relies on the 
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sharp of water reflection part is complete and distinct. Actually, 
the water reflection is a complex and various phenomena leading 
to the modeling and recognition difficulty. As shown in Figure 2 
(a) and (b), the snow mountain and trees are partially reflected 
because the ice covers some area of the lake. Figure 2 (c) and 
Figure 2 (d) demonstrate the color distortion of the forest after 
reflection. Obviously, the red information loses a lot. In Figure 
2(f), three most important Tamura texture features from the scene 
part and water part are compared. There exist great differences of 
contrast and directionality between the original object and its re-
flection.  

                  
(a)                                                         (b)                                                       

         
                    (c)                                                         (d) 

             
 (e)                                                        (f) 

Figure 2. Examples of water reflection images.  
 

This paper formulates the water reflection recognition as an im-
perfect reflection symmetry problem, which has been studied for 
more than twenty years in computer vision. To address the special 
characteristics of water wave, we construct a novel feature space 
which is invariant to motion blur caused by the relative motion of 
the water part in finite exposure time of human’s eyes or other 
kinds of sensors. Moreover, we design an efficient detection algo-
rithm to recognize the images with water reflection and to detect 
the reflection axis as well.   
The rest paper is organized as follows. Section 2 reviews previous 
work about symmetry, especially imperfect reflection symmetry. 
In section 3, we discuss the limitations of using existing feature 
space in water reflection detection task and propose a motion blur 
invariance space (MBIS) according to the characteristics of water 
wave. Section 4 formulates the water reflection recognition to the 
optimization problem and provides an efficient solution using 
dynamic programming (DP). Experiments on real dataset are re-
ported in section 5. The paper is closed with conclusion.     

2. PREVIOUS WORK 
Symmetry is an essential and ubiquitous concept in nature, science, 
and art. The problem of symmetry detection has been extensively 
studied in numerous fields including visual perception, computer 
vision, and computational geometry. The goal of the research on 

symmetry roughly includes recognition of the symmetry group [4], 
determination of the axis of symmetry or affinely [5] [6] and per-
spectively distorted symmetry detections [7] [8]. 
Reflection symmetry is a type of symmetry in which one half of 
the object is indistinguishable from its mirror transformed image 
of the other as shown in Figure 3 (a). As one of the most common 
basic symmetries [9], reflection symmetry has been used in many 
different fields for various applications from face analysis [10], 
vehicle detection [11] to medical image analysis [12]. Since the 
restriction to exact symmetries limits the use of these methods for 
real-world objects, more and more work focused on the imperfect 
symmetry as shown in Figure 3 (b). Two types of imperfect sym-
metry are studied. Local symmetry means a portion of a model is 
perfectly symmetric while the rest of it is not. Approximate sym-
metry means the entire model is not symmetric but could be made 
symmetric with a slight deformation [13].  

                          
           (a)                                                     (b) 
Figure 3. Examples of symmetry images. (a) is perfect sym-
metry, (b) is curved glide-reflection imperfect symmetry. 
Based on the nature of the features extracted from images, the 
existing algorithms for reflection symmetry detection can be 
roughly classified into two general approaches, namely, global 
versus local approaches [14]. In global approaches, some of algo-
rithms are based on the global features, especially in Fourier do-
main. For example, Lucchese [15] proposed an elegant approach 
to analyze the angular properties of an image in Fourier domain. 
And Derrode et al. [16] analyzed the symmetries of real objects by 
computing the Analytic Fourier-Mellin transform (AFMT). Dif-
ferent from researches in Fourier domain, [17] considered the 
entire contour at once when finding the axes of skewed symme-
tries. Because the use of local features is one of the corner stones 
of modern computer vision, recent work emphasizes the use of 
local image features. The representative one is scale-invariant 
feature transform (SIFT) descriptor. Loy et al. [18] chose detec-
tion points as interesting salient points and took advantage of 
pairwise matching of their SIFT descriptors to detect the axis of 
symmetry. Some other existing work focused on the shape charac-
teristic of symmetry. For example, local invariants computed as 
single points [19] [20] on the curves or statistically compare pairs 
of contour points [21] [22].  

3. FEATURE SPACE IN WATER REFLEC-
TION RECOGNITION 
In this section, we discuss the limitations of using existing feature 
space of symmetry detection in water reflection problem. Then we 
analyze the feature space distortion caused by motion blur. Third, 
we construct a novel feature space called motion blur invariance 
space (MBIS).   

3.1 Limitation of Existing Feature Space for 
Water Reflection Recognition 
For global approach of reflection symmetry detection, features 
from Fourier domain are always used. In [15], Lucchese proved 
that if an image 2( ),x x having reflection symmetry with 



respect to the reflection axis tany x , their Fourier transform 
2( ),k k , has the same reflection symmetry with respect to the 

line tany xk k . The difference between the original one and 
the reflection one will be much smaller than the difference of 
other parts. But due to the characteristics of water part, this con-
clusion is not always true. Figure 4(a) is an image with water re-
flection. Figure 4(b) is the image with the real reflection axis. We 
calculate the Fourier transform with this real reflection axis. Based 
on Figure 4(d) which is the Fourier transform ( )k  results of 
object part and water part, we find the ( )k  do not have reflection 
symmetry as expected. The average difference of object part and 
water reflection part is much larger than fake symmetry axis 
marked just as in Figure 4(c).  

=3503

=4196

Figure 4. An example of features from Fourier domain. (b) 
and (d) show the Fourier transform with real reflection axis. 
(c) and (e) show the Fourier transform with fake reflection 
axis.  
For local approach of reflection symmetry detection, SIFT de-
scriptor is the most representative feature. As shown in Figure 5 
(a), the desired result is that the SIFT saliency points are pairwised 
between the object and its reflection. Figure 5 (b) shows the real 
SIFT points detection and matching result using algorithm in [18]. 
Obviously, it is difficult to recognize the water reflection by 
matching the SIFT points. 

             
 (a)                                              (b) 

Figure 5. An example of SIFT saliency points detection and 
matching. (a) is the desired result, (b) is the real result of 
SIFT descriptor detection and matching.  

3.2 Feature Distortion Caused by Motion Blur  
Water reflection causes existing reflection symmetry detection 
techniques invalid mainly because the motion blur from water 
wave is large enough to distort the image features. Motion blur is 
a well known degradation factor due to the relative motion of the 
sensor and the scene in finite exposure time [23]. The formation 
model for the motion blur is: 

                     ( , ) ( , ) ( , ) ( , )g x y I x y h x y n x y               (1) 

where ( , )I x y is the original image, ( , )h x y is the point spread 
function (psf), ( , )n x y is additive noise and ( , )g x y is represents 
the observed image. Assume the linear translation motion func-
tion ( ) [ ( ), ( )]x yTm t Tm t Tm t  is known, ( , )h x y has the fol-
lowing form (2), where the Dirac delta function describes the two-
dimensional displacement function of the image during the expo-
sure interval ( , )o o et t t , et denotes the exposure period, and 

1 / et is a normalizing factor. 

             
1( , ) [ ( ), ( )]

t to e

x y
toe

h x y x Tm t y Tm t dt
t

         (2) 

Our eyes respond similar to a shutter speed of 1/30 second and the 
conventional cameras expose pictures 25 or 30 times per second 
[24]. Although the fastest shutter speed available is much higher 
now, 1/30 second is still commonly selected in landscape photog-
raphy. The average phase velocity of water is about 0.3m/sec. So 
in every expose, one particle of the water will shift about 10mm in 
average. In the camera, the object distance u , image distance 
v and focal length f obey the Equation (3).  

1 1 1
u v f

                                        (3) 

Because in reality, u f , it is reasonable approximate that the  
v f . Based on this approximation, the angle of field 2 , 
which describes the angular extent of a given scene that is imaged 
by a camera, has two relationships with the object and the image 
described in (4) and (5). rx is the radius of field, and 2d is the 
size of the film (or sensor). Then we could get the Equation (6).               

d f tg                                          (4) 

rxtg
u

                                           (5) 

r rx xu
f d d

                                  (6) 

The motion in image could be denoted as ( / )d x f u . 
The focal length of human eyes to see the nature view is about 
50mm, and we assume the object distance is 20000mm. As an 
example of 1/4 CCD, if the size of image is 640 480 pixels 
(30M), the pixel size = 5 5 um. As a result, the motion 

10 50 20000 1 0 005 5( / ) ( / . )d  pixels, i.e., the point in 
the object moves the distance about 5 pixels in the reflection part.  
A conventional way to carry out motion blur object recognition is 
first to deblur the image, and then to apply the recognition meth-
ods. The core idea in deconvolution is to calculate the point spread 
function. For calculating the point spread function, we need to 
assume the velocity and direction of motion blur is unique [25] 
[26]. But water in nature is composed of a great quantity of waves 
with different frequency. And the velocity of different position in 
the wave profile with different frequency is various. It is impossi-
ble to remove the motion blur by calculating the point spread 
function even we simplify the water wave problem into a bounda-
ry value problem based on [27].  



3.3  Motion Blur Invariance Space 
The approach using invariant features appears to be the most 
promising and has been used extensively due to its relative low 
computation complexity and easily representation. The basic idea 
of invariant features is to describe the objects by a set of measura-
ble quantities called invariants that are insensitive to particular 
deformations and could distinguish objects belonging to different 
classes. From a mathematical point of view, invariant Iv is a func-
tional defined that does not change its value under degradation 
operator De , i.e. that satisfies the condition ( ) ( ( ))Iv I Iv De I
for any image function I . In practice, in order to accommodate 
the influence of imperfect segmentation, intra-class variability and 
noise, we usually formulate this requirement as a weaker con-
straint: ( )Iv I should not be significantly different from 

( ( ))Iv De I , just as | ( ) ( ( )) | thresholdIv I Iv De I .  

As we described above, the key to address the problem resulted 
from the motion blur of water wave is to find invariants features. 
The history of moment invariants began in the nineteenth century 
under the framework of group theory and the theory of algebraic 
invariants. Moment invariants were first introduced to the pattern 
recognition and image processing community in 1962 [28]. Since 
that time, the research of moment invariants obtained deep im-
provements, extensions and generalizations and used in many 
areas of application. There have been numerous papers on mo-
ment invariants to affine and projective transforms, to photometric 
changes and to linear filtering of an image [29][30]. 
Image moments are weighted averages (moments) of the image 
pixels’ intensities, or functions of those moments, usually chosen 
to have some attractive property. Compared with color histogram, 
the shift of moment due to the change of illumination is minimal 
[31] which often happens in water part.  

General moment pqM   of an image ( , )I x y  is defined as: 

                ( , ) ( , )pq pq

D

M p x y I x y dxdy                           (7) 

where p , q are non-negative integers and r p q is called the 

order of the moment, and  00 10( , ), ( , ), ..., ( , ), ...kjp x y p x y p x y  

are polynomial basis functions. The most common choice is a 
standard power basis ( , ) k j

kjp x y x y that leads to geometric 

moments: 

( , )p q
pqm x y I x y dxdy                             (8) 

The central moments are defined as: 

                ( ) ( ) ( , )p q
pq x x y y I x y dxdy              (9) 

where 10 00/x m m and 01 00/y m m are the components of 
the centroid. If ( , )I x y is a digital image, Equation (8) and (9) are 
changed into (10) and (11).  

( , )p q
pq

x y

m x y x y                            (10) 

                ( ) ( ) ( , )p q
pq

x y

x x y y I x y                (11) 

Moments pq where 2p q  can be constructed to be invariant 
to both translation and changes in scale by dividing the corre-
sponding central moment by the properly scaled (00) th moment, 
using the following formula. 

                                         
1

2
00

( )

pq
p qpq                                    (12) 

When we neglect the additive noise ( , )n x y , the observed image 
( , )g x y  in (1) could be denoted as (13). 

( , ) ( , ) ( , )g x y I x y h x y                   (13)  
In motion blur case, the ( )p q  th geometric moments of the 

original image is defined as ( )I
pqm , the ( )p q th geometric mo-

ments of the blurred image is defined as ( )g
pqm , the ( )p q th cen-

tral moments of the original image is defined as ( )I
pq , and the 

( )p q th central moments of the blurred image is defined as 
( )g
pq .  

According to the properties of Dirac delta function, 0( )h
pq  for 

every 0q , and if ( )p q is odd, then 0( )h
pq . Geometric 

moments of the blurred image ( )g
pqm and Geometric moments of 

the original image ( )I
pqm  could be proved has the relationship (14). 

In similarly, ( )g
pq and ( )I

pq  has the relationship (15).  

0 0

( ) ( ) ( )
p q

g k j f h
pq p q kj kj

k j

m C C m m                   (14) 

0 0

( ) ( ) ( )
,

p q
g k j h I
pq p q kj p k q j

k j

C C               (15) 

Derived from Hu’s moment invariants [28], we construct the  
motion blur invariance space (MBIS) which is composed of four 
motion blur invariant moments in (16).  

2 2
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m
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   (16)  

4. Reflection Cost Minimization 
In this section, we formulate water reflection recognition to an 
optimization problem and propose an efficient algorithm called 
reflection cost minimization (RC M) using DP.   



4.1 Water reflection formulation 
Because water reflection is imperfect reflection symmetry, the 
definition of reflection symmetry is given firstly.  

Definition 1 A set nS R  is reflection symmetric with respect to 
the vector (reflection axis) 0 0cos ,sin  based on a reflec-

tion transform DK
T , if x x,i jS S , s.t, 

                                   x xj D iK
T                                          (17)   

where for 2x i , DK
T is given by 

     
0 0

0 0

2 2 0
2 2 0
0 0 1 1

cos sin
( , ) sin cosDK

x
T x y y                  (18) 

So an image 2x x x( ), ,
x

I
y

, if it is said to have the 

reflection symmetry with the reflection axis 0 0cos ,sin , 
obeys the  Equation (19). 

2x x x( ) ( ( )),DK
I I T                               (19) 

Because water reflection is imperfect reflection symmetry, in most 
of conditions, (19) could not be strictly complied with in imper-
fect symmetry due to the complexity of the water part in image 
with water reflection. It means that in water reflection case, the 
difference between x( )I  and x( ( ))DK

I T  is not equal to zero.  

Based on the analysis, we transform the water reflection problem 
into an optimization problem based on the complex moment invar-
iants feature descriptors given by (20). In (20), threshIR is the 
threshold to distinguish water reflection with no water reflection, 

0 is the tilt angle of the reflection axis. 
4 4

0
1 1

4 4

1 1

x x

x x

argmin | ( ( )) ( ( ( ))) |

min | ( ( )) ( ( ( ))) |

m m Di i K
i i

m m D threshi i K
i i

IR I IR I T

IR I IR I T IR
       (20) 

In order to detect the possible reflection axis, we could find the 
global optimization axis by exhaust algorithm, but it requires ex-
cessive computation even for small images.  
To avoid excessive computation, we firstly do some simplifica-
tions to the optimization function. Then an efficient search algo-
rithm is proposed to solve the optimization problem based on DP. 
Later, we compare the difference of computational complexity 
between exhaust algorithm and our algorithm. 
In nature, water reflection often does not happen in the whole 
image and the reflection axis is often not complete or straight. 
Taking these situations into consideration, we do some simplifica-
tions based on the optimized problem shown in (20). Firstly, im-
ages are separated into sM  sub-images vertical to the supposed 

reflection axis direction
0

DI . To every sub-image  

1,j sI j M  , candidate reflection axis is denoted as 

0
1 1, , ,j l sRA j M l H , where 

0
H is the height of the 

sub-image kI . The sum difference of moment invariants , ,j k lDF  

of two sub-block , , ( )up
j k lI x  and the reversed sub-block 

_
, , ( )rev down
j k lI x  which located on both sides of line ,j lRA  is denoted 

as (21), where k  is the height of sub-block which is above kT . 

4

1

x x_
, , , , , ,[ ( ( )) ( ( ))]up rev down
j k l m j k l m j k li i

i

DF IR I IR I           (21) 

Reflection axis distance ,j lDS is utilized to measure the continui-

ty of the adjacent reflection axis which is denoted as (22).  

1 1 1

1
. .

,

/j l j l d s
j l

s

RA RA T j M
DS

j M
      (22) 

In this equation, 1. .j l j lRA RA is to describe the vertical dis-

tance between the candidate reflection axis in adjacent sub-image 

jI  and 1jI . dT  is the factor used to normalize the distance to an 

specified range. 
Then, we define the reflection cost RC  in the current slide win-
dow mSW ,

0
1 swm H W  which is decided by , ,j k lDF  and 

,j lDS  in Equation (23). The slide window mSW with width swW  

is horizontal to the candidate reflection axis direction. The loca-
tion of the centerline in mSW  is denoted as mL  where 

2/m swL m W . The minimum of the reflection cost RC  in 

all slide windows is denoted as RCMIN . And the optimized re-

flection axis which is composed of *,j l
RA  in every sub-image jI  

of slide window *
mSW  with the minimum of the reflection cost is 

denoted as (24).  

1

0
00

1
2 2 2

, , ,( ),

,  ,  ,

Ms

j k l j l
j

k m sw

RC DF DS

H
T k l SW m H W

 (23) 

0 1 2
1

*
, , ,, , ,

[ , , , ,... ] argmin[ ( )]
Ms

m j k l j ll l M ls
j

SW RA RA RA DF DS    (24) 

The goal of this optimization problem is to find RCMIN  and the 
optimized reflection axis in the image.  

4.2 Reflection cost minimization via Dynamic 
programming 
The optimization problem of RCM we described in (23) and (24) 
is quite like the problem which is often solved by dynamic pro-
gramming (DP). DP is both a mathematical optimization method 
and a computer programming method. In both contexts it refers to 
simplifying a complicated problem by breaking it down into sim-
pler sub-problems in a recursive manner. In addition, even we 
have these simplifications, and DP is utilized to find the minimum 
moment cost, this work is still very difficult. So we have a prepro-
cessing work before DP to limit the number of candidate reflec-
tion axis ,j lRA in every sub image jI . We rank the differences of 



moment invariants , ,j k lDF , and only those ,j lRA  whose differ-

ence is fallen into the nM minimum value are considered as the 
candidate reflection axis.   
Then we define some basic concepts and variables in DP for water 
reflection problem. The Stage variable 1, sK j j M  is used 

to describe the current stage or sub-image. The State variable K  
is to describe the state as every stage. In our algorithm 

,K j lRA is the candidate reflection axis in the sub-image kI . 

The Space of State variable K  is the set of all possible State 
variables. In our problem, it is the set of all possible candidate 
reflection axes ,j lRA  whose difference is fallen into the nM min-

imum value in the sub-image jI . The decision variable Ku  is 
defined as the decision based on the current state. In our case, 

Ku is the choice of the candidate reflection axis 1,j lRA in the next 

sub image 1jI . And the Transition Function is defined as 

1K Ku . The Object function is defined as (25) where Kv is the 
minimum of reflection cost in stage K  denoted in (26). 

1

( , )
Ms

K K K
K

V v u                                          (25) 

0
00

1
2 2 2, , ,min[ ], , , , ,K j k l j l k m sw

H
v DF DS K j T k l SW m H W  (26) 

Our DP function is denoted as (27), where ( )K Kf  is the mini-

mum of the reflection cost in every stage K  in current mSW . 

1 1

1

1
( ) min{ ( , ) ( )}

,
K K K K K K K

K K s

K K

f v u f
K j j M

u
                 (27) 

Then we solve the (27) by positive sequence method to get the 
optimized policy in current slide window mSW . After it, we could 

get RCMIN  which is the minimum of all RC  in different slide 

windows and in different 0 which is calculated by Equation (28). 

00
1

2 2
min( ( )), ,RC M M swS s

MIN f m H W   (28) 

4.3 Algorithm and complexity analysis  
In this part, the algorithm about the calculation of RCMIN  is 
described.  

Algorithm 2 Calculation the minimum moment cost 

Input:  Image 2x x( ),I , Number of sub-block 6sM ,

Height of the sub-image 
0

H , Height threshold of sub-block 

0
5/jT H , Number of candidate reflection axis 

0
4/nM H

Normalization factor 
0

12/dT H .The width of slide window 

swW . 

Output: Minimum moment cost RCMIN  
1. Sum difference of moment invariants calculation by (21) 

for 0 2 2
, ..., do

for 1, ..., sj M  do 

for 
0

1, ...,l H do 

      for
0

2, ..., /kk T H do
4

1

x x_
, , , , , ,[ ( ( )) ( ( ))]up rev down
j k l m j k l m j k li i

i

DF IR I IR I  

        end for    
end for 

end for 
end for 

2. Rank the differences of moment invariants , ,j k lDF for every 

0 , contain those ,j lRA  whose , ,j k lDF  value fallen into the 

nM minimum as the candidate reflection axis. 

3. Reflection axis distance ,j lDS  calculated  by (22) 

1 1 1

1
. .

,

/j l j l d s
j l

s

RA RA T j M
DS

j M
 

4. Minimum moment cost in stage K  calculated by (26)  

0
00

1
2 2 2, , ,min[ ], , , , ,K j k l j l k m sw

H
v DF DS K j T k l SW m H W

5. Minimum moment cost calculation by DP function step by step 
for every 0  by (27) 

                 
1 1

1

1
( ) min{ ( , ) ( )}

,
K K K K K K K

K K s

K K

f v u f
K j j M

u
 

6.   Minimum moment cost RCMIN  calculated (28) 

00
1

2 2
min( ( )), ,RC M M swS s

MIN f m H W

Now, we will compare the difference of computational complexity 
between exhaust algorithm and our proposed RCM algorithm. For 
simplicity, we only calculate that the computational complexity to 
find the optimization axis in direction 0 . To every image, if we 
utilize the exhaust algorithm to find the global optimization axis, 
the complexity is 2 0

(( log ( )) )M M Ms s s
sw sw swO W W W H . If the 

proposed dynamic programming algorithm is utilized, the com-
plexity is 2 2

2 0
1(( ) log ( ) )s sw swO M W W H  . It is obvious that 

the computational complexity of our algorithm is much lower than 
that of exhaust algorithm. 

5. EXPERIMENT AND DISCUSSION 
To demonstrate performance of our proposed technique, we con-
duct three experiments, including classification of the images with 
and without water reflection, detection of axis of reflection, and 
retrieval of the images with water reflection. For the proposed 
techniques, the parameter sM , kT , dT  and nM , actually shows 
stable performance under different values. In our experiments, we 



set 6sM ,
0

5/kT H  , 
0

12/dT H , 
0

4/nM H , 

0
25/swW H . 

5.1 Classification Experiment  
In the first experiment, for evaluating the classification accuracy 
of proposed technique, we construct the dataset including 50 im-
ages with water reflection and 50 nature scene images without 
water reflection. Figure 6 shows thumbnails of the images with 
water reflection and without water reflection used in the first ex-
periment. 
 

          

             

Figure 6. Example images in classification experiment. The 
first row shows the images with water reflection and the se-
cond row shows the images without water reflection. 
We subdivide this dataset equally into five folders, and conduct 
fivefold cross validations for the learning algorithms. Every time, 
we utilize one folder for testing, and the other four folders for 
training. If RCMIN  is below the threshold threshIR  learnt by bina-
ry SVM based on the training dataset, this image is classified as 
the image with water reflection. The classification accuracy re-
sults are shown in Table 1. “Classification accuracy” is abbreviat-
ed by Ca, “Water reflection” is abbreviated by W_r. The perfor-
mance shows that our proposed technique based on MBIS could 
be effectively distinguish the water reflection images with non 
water reflection images.  

Table 1. Classification accuracy  
Trail 1 2 3 4 5 
Ca of W_r 90% 80% 90% 90% 80%
Ca of non W_r 80% 80% 80% 90% 80%
Ca of all 85% 80% 85% 90% 80%

5.2 Detection the Reflection Axis Experiment 
To compare with existing symmetry algorithms, the detection 
experiment on 100 images with water reflection is carried out. The 
goal of our experiment is to detection the reflection axis. We 
compare with the representative algorithm of Loy et al. [18], who 
chose SIFT detection points as interesting salient points and took 
advantage of pairwise matching of their SIFT descriptors to detect 
axis of symmetry. The accuracy of axis detection of their algo-
rithm is 29%, and the accuracy of axis detection of our algorithm 
is 84%. In Figure 7, we give some examples to illustrate the detec-
tion results. Our detection results are shown in first and third row. 
And results of [18] are shown in the second and fourth row. It is 
obvious that our algorithm is more effective than theirs.  
 

         
 

         
 

             
 

             

Figure 7. Performance comparison of reflection axis detection. 
Our detection results are shown in first and third row. And 
results of [18] are shown in the second and fourth row.  

5.3 Retrieval Experiment  
For evaluating the performance of the proposed technique, we 
apply it in text based image retrieval. The textual query is “water 
reflection”, every image which is related to this concept is re-
turned. The dataset downloaded from Google contains two parts, 
the first part is 50 images with water reflection and the second part 
is 10000 images without water reflection. Figure 8 shows thumb-
nails of the images with and without water reflection used in the 
retrieval experiment.  

     

                         

Figure 8. Example images with and without water reflection in 
retrieval experiment. 
In our experiment, we use four popular evaluation measures of 
evaluating the performance of image retrieval systems, precision, 
recall, Average precision and NDCG. The Precision and Recall 
results of retrieval experiment are shown in Table 2. The number 
of retrieval sample is from 10 to 50 with increments of 10.  Preci-
sion and recall are single-value metrics based on the whole list of 
documents returned by the retrieval system. For systems that re-
turn a ranked sequence of images, it is desirable to also consider 
the order in which the returned images are presented. So we also 
present the results of AveP and NDCG in Figure 9.  

Table 2. Precision and recall results of retrieval experiment 
Retrieval Number 10 20 30 40 50 

Precision 70% 70% 73% 73% 72% 

Recall 14% 28% 44% 58% 72% 



5.4 Discussion 
According to three experiments and different kinds of evaluation, 
our motion blur invariance space and algorithms are effective in 
water reflection detection and recognition. Figure 10 shows the 
thumbnails of first eight images without water reflection but these 
images are finally retrieved out. It is easily to find that these im-
ages are imperfect symmetry. We are sure it is the limitation of 
our algorithm, that our algorithm cannot distinguish the image 
with water reflection with the imperfect symmetry image. In fu-
ture, we will focus on how to distinguish images with water re-
flection from other imperfect symmetry images.  

6. CONCLUSION 
In this paper, to address the difficulty in water reflection recogni-
tion, we construct a set of features in motion blur invariance space 
(MBIS). Moreover, we propose an efficient water reflection clas-
sification and axis detection algorithm RCM using dynamic pro-
gramming. The experiments on three real image datasets have 
demonstrated impressive results of the proposed feature space and 
techniques.      
 

 
Figure 9. AveP and NDCG results of the retrieval experiment. 

                     

   
Figure 10. Experiment images that the proposed algorithm 
wrongly retrieve as the water reflection.  
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