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A Context-Supported Deep Learning Framework for
Multimodal Brain Imaging Classification

Jianmin Jiang , Ahmed Fares , and Sheng-Hua Zhong

Abstract—Over the past decade, “content-based” multimedia
systems have realized success. By comparison, brain imaging and
classification systems demand more efforts for improvement with
respect to accuracy, generalization, and interpretation. The rela-
tionship between electroencephalogram (EEG) signals and corre-
sponding multimedia content needs to be further explored. In this
paper, we integrate implicit and explicit learning modalities into
a context-supported deep learning framework. We propose an im-
proved solution for the task of brain imaging classification via EEG
signals. In our proposed framework, we introduce a consistency
test by exploiting the context of brain images and establishing
a mapping between visual-level features and cognitive-level fea-
tures inferred based on EEG signals. In this way, a multimodal ap-
proach can be developed to deliver an improved solution for brain
imaging and its classification based on explicit learning modali-
ties and research from the image processing community. In addi-
tion, a number of fusion techniques are investigated in this work
to optimize individual classification results. Extensive experiments
have been carried out, and their results demonstrate the effective-
ness of our proposed framework. In comparison with the exist-
ing state-of-the-art approaches, our proposed framework achieves
superior performance in terms of not only the standard visual
object classification criteria, but also the exploitation of trans-
fer learning. For the convenience of research dissemination, we
make the source code publicly available for downloading at GitHub
(https://github.com/aneeg/dual-modal-learning).

Index Terms—Deep learning, electroencephalogram (EEG), ex-
plicit learning modality, implicit learning modality, object classifi-
cation.
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I. INTRODUCTION

HUMAN brain analytics has long been researched across a
number of communities, including neural science, brain

science, psychology, etc. At present, the brain interface is pri-
marily examined via two approaches, functional magnetic res-
onance imaging (fMRI) and electroencephalograms (EEGs),
where an EEG is a recording of voltage fluctuations produced
by ionic current flows in the neurons of the brain [1]. While
reflecting the brain’s spontaneous electrical activities, an EEG
also has the potential to provide a subjective response based on
individual experiences [2], [3]. As a noninvasive brain signal-
ing technique, an EEG provides high spatiotemporal resolution
data, presenting a vivid reflection of the dynamics of the brain
[4], which makes it ideal for a variety of research fields, such
as brain-computer interface (BCI) [5]–[7], affective state recog-
nition [8], [9], and diagnosis of brain-related diseases, such as
epilepsy [10], [11], Alzheimer’s [12], [13], Parkinson’s etc. [14].

For the past decades, an understanding of EEG data evoked
by specific stimuli/objects has been the primary goal of BCI and
other important EEG-related research fields. Hence, EEG-based
object/event classification becomes a key component across all
these communities. Further, a number of psychological and neu-
roscience studies have demonstrated that up to a dozen special
object categories can be classified by the event-related potential
(ERP) recorded through EEGs [15]–[17], such as human faces.
With applications of machine learning, a range of models have
been developed [18]–[20] to address the problem of classifying
visual objects via EEGs. However, most stimuli/objects in these
studies are designed with only a single object set inside a clean
background because enormous ambiguity surrounds the inter-
pretation of EEG data, and multichannel EEG data sequences are
generally only available in small quantities. In addition, EEGs
are high dimensional yet have low signal-to-noise ratios, and the
differences among individual subjects incur considerable tem-
poral and spatial variability [21]. One study that is similar to
ours in terms of the categorization objective is reported in [22],
in which Walther et al. proposed an approach to estimate the
categories of natural scenes using fMRI for only six categories.
Specifically, they used fMRI and distributed patterns to ana-
lyze what regions of the brain can classify natural scenes. In
practice, fMRI showed great potential in the brain imaging
classification process; however, its main disadvantage lies in
the experimental costs. This limitation is overcome by lower-
cost techniques, such as EEGs, which provide higher temporal-
resolution data compared to fMRI, but are susceptible to the
aforementioned problems represented by lower signal-to-noise
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ratios and spatial resolutions, posing significant challenges for
brain imaging classification. With the progress of machine learn-
ing, some important limitations of the traditional neural net-
works have been overcome [23]–[27]. Inspired by such advance-
ments, content-based multimedia understanding has achieved
remarkable success in object detection [28] and image scene
classification [29]. In contrast to the success of content-based
multimedia understanding over the recent years, research on
EEGs is still limited, providing an enormous scope for con-
siderable improvement in terms of information extraction and
classification of EEGs, including accuracy, generalization, and
interpretability.

At present, image classification based on physiological sig-
nal analysis (implicit analysis) and content-based multimedia
analysis (explicit analysis) have been two independently active
research areas, and the relationship between the massive amount
of physiological signals and the corresponding multimedia con-
tent has been relatively unexplored [30]. Nevertheless, the infor-
mation from these two sources is likely to be complementary.
On the one hand, physiological signal data may help us bet-
ter understand the process of image classification inside human
brains, and thus, it can be helpful for designing a highly robust
brain-inspired model to classify the visual objects under com-
plex backgrounds and occlusions. On the other hand, the feature
extraction methods proposed for multimedia content analysis
could inspire us to discover new and unstudied physiological
signal patterns for developing more powerful and more intelli-
gent object classification algorithms. In other words, brain-based
image classification could be significantly improved if we can si-
multaneously leverage both the implicit and explicit modalities
in designing the classification algorithms. Our extensive liter-
ature survey indicates, however, that there is no existing work
integrating them for EEG-based image classification, although
multimedia content analysis has achieved impressive progress
over the past decade.

In this paper, we propose a novel deep brain analytics frame-
work together with a multimodal approach for EEG-based im-
age classification by integrating implicit and explicit modalities.
Specifically, a consistency test based on a mapping between im-
age content features and EEG-based features is added to pro-
mote potential solutions, and better performances are achieved
compared to the state-of-the-art methods for EEG-based ob-
ject classifications. Further, our proposed deep framework also
demonstrates a good generalization capability in object catego-
rization over a number of publicly available and widely adopted
benchmarking datasets. In comparison with the existing research
efforts and the corresponding state-of-the-art methods, the nov-
elty of our contributions can be highlighted as follows. 1) We
introduce a new concept of integrated implicit learning and ex-
plicit learning modalities to provide an alternative solution for
the problem of brain imaging classification. 2) We propose a
new deep brain analytics framework to exploit not only the
strength of integrated multiple modalities, but also the advan-
tages of the added consistency test for recommending poten-
tial targets and the fusion of individual classification results.
3) We carry out extensive experiments, and the results demon-
strate that our proposed deep framework achieves superior

performances in comparison with the existing state-of-the-art
approaches.

II. RELATED WORK

In psychology, stimuli refer to objects or events that cause a
sensory or behavioral response in an organism. Therefore, stim-
uli form the basis of perception and behavior for human brain
analytics, which has been intensively researched across the ar-
eas of neural science, psychology, and neural computation. Re-
searchers aspire to present, analyze, distinguish, and understand
how the human brain receives, handles, and processes rich and
varied information in the real world through EEG signals, among
which information about visual content and emotions is the pri-
mary target for research and analysis. Therefore, multimedia
data containing a large amount of visual content information and
emotional information are considered to be extremely suitable
stimuli material, which are widely used in the acquisition, analy-
sis, and classification of EEG signals [31], [32]. The research on
multimedia content computing and multimedia emotional com-
puting based on EEG signals has attracted enormous attention
across relevant research communities [19], [32]–[35].

Before the popularity of deep learning methods, the primary
approaches for image classification were predominantly feature
based, and the commonly used features mainly included time-
frequency features extracted by signal analysis methods, such
as the power spectral density [36], bandpower [37], independent
component analysis (ICA) [38], and differential entropy [39].

With the extensive application and in-depth promotion of deep
learning, an ever-increasing number of brain and neuroscience
research teams are exploiting its strength in designing ambitious
algorithms to achieve intelligent understanding and perceptional
analysis of brain activities via EEGs or fMRI. In [16], deep belief
networks and deep automatic encoders to resolve the ERP P300
and non-P300 signals were reported. In [40], Yin and Zhang pro-
posed a single-channel EEG classification method with a deep
belief network to evaluate mental workload and mental fatigue
states. In [20], an SVM classifier was trained to classify visually
evoked EEG data according to 12 different object categories.
In [41], a frequential deep belief network (FDBN) for classifi-
cation tasks in motor imagery and adaptive EEG analysis was
proposed. In [42], Gogna et al. proposed deep learning meth-
ods to solve the problem of reconstruction and classification of
EEG data. In [43], a four-layer convolutional neural network to
detect interictal discharges from intracranial EEG data was de-
scribed, and determination of the effects of convolutional neural
networks on decoding and visualization of EEGs was attempted
and reported [44]. In [45], Dong et al. used the rectified linear
unit activation function and long short-term memory (LSTM) on
time frequency domain features to classify sleep stages. In [46],
Stober et al. used CNNs and an autoencoder to classify audio-
evoked EEG recordings. In [47], a compact full convolutional
network (EEGNet) was proposed and applied to four different
brain-machine interface classification tasks. In [48], Spampinato
et al. used long-term and short-term memory network learning
to obtain an EEG data representation based on image stimuli and
constructed a mapping relationship from natural image features
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Fig. 1. (a) Illustration of the existing research on the single modality of im-
plicit learning. (b) Illustration of our proposed framework with dual modalities,
implicit learning, and explicit learning.

to EEG characterization. Finally, they used the new representa-
tion of EEG signals for classification of natural images. Com-
pared with traditional methods, these deep learning based ap-
proaches have achieved outstanding results in realizing their re-
spective research objectives. While these methods have demon-
strated the capability of using brain signals and deep learning
for classification purposes, none of them simultaneously inte-
grated implicit and explicit modalities, and the state-of-the-art
classification accuracy achieved to date by Spampinato et al.
was 82.9% [48], leaving significant space for further research
and improvement.

III. PROPOSED MULTIMODAL CLASSIFICATION ALGORITHM

As shown in Fig. 1(a), the existing efforts on brain image clas-
sification are primarily limited to a single modality, so-called
implicit learning, where EEG or fMRI signals are directly pro-
cessed to extract brain features for learning and classification.
Whether the learning process is designed as conventional or
deep learning based, the essential strategy of a single modal-
ity remains unchanged. While such single modality strategies
have achieved good progress across areas of both image process-
ing and computer vision, the rich source of image content from
which stimuli are selected for producing EEG or fMRI signals
is basically ignored. To exploit the great successes, especially
those achieved by deep learning based approaches toward intel-
ligent image content analysis and classification, we introduce as
a new strategy a second modality, so-called explicit learning, as
shown in Fig. 1(b), which is added to target the rich source of
images used for stimuli and to determine whether their analysis
could provide further assistance in improving the classifications
of EEGs.

Given m classes of images G = {gi}mi=1, from which both
training images and testing images are selected as stimuli to
produce EEG signals, we apply deep learning based networks
to extract brain feature vectorsBi ∈ Rdb , wheredb stands for the
dimension of the brain features. To create the second modality

and exploit the rich source of the image database for improved
brain signal classification, we propose to examine the m classes
of images inside the original image database and determine if any
of their content description and analysis in the so-called explicit
learning can boost the implicit learning-based classification. To
minimize the computing cost and the algorithm complexity, we
select a number of representative images out of each class to
characterize all the images inside the corresponding class, i.e.,
gi, i ∈ [1,m]. As the widely researched approach of clustering
proves to be powerful in characterizing images, we apply a pixel-
based clustering method to cluster all the images within each
individual class such that the centroid of each cluster is taken
as the most representative image for its corresponding class.
In this way, the K-means clustering takes each class of images
gi, as input and produces the most representative images per
class, Gr = {gr

i }mi=1, as output, where
{
ri1, r

i
2, . . . , r

i
ni

} ∈ gr
i

declares that each representative image classgr
i actually contains

ni representative images. In our algorithm design, we simply use
the number of centroids as the number of representative images
since the clustering is applied to all images of each individual
class. While G denotes the original image set, with gi being
the ith class of images, Gr denotes the extracted representative
image database, with gr

i being the ith class of representative
images.

As seen in Fig. 1, the implicit learning modality essentially
relies on deep learning of brain features to determine which class
the input brain feature is associated with. To this end, the brain
features of all the training images can be regarded as providing
a certain level of ground truth for describing all the different
classes. To allow a certain level of flexibility and tolerance for
those images that could be selected as the test image, we cluster
the entire database rather than the training images exclusively
to produce the representative class for the consistency test and
hence propose to add a second modality, i.e., the so-called ex-
plicit learning, by directly mapping all the representative images
into the brain feature space and hence construct an explicit brain
feature for each of them. In other words, we do not actually ex-
tract the brain feature from the EEG signals of those represen-
tative images; rather, we derive the brain feature directly from
the mapping process because not all of the features have EEGs
available. We then carry out a similarity-based consistency test to
determine which representative brain feature provides the clos-
est match for the brain feature of the stimuli image, and thus,
the corresponding class can be selected as the recommended
classification output to assist the classification from the implicit
learning modality, the details of which are described as follows.

Let Bt =
{
bt
1,b

t
2, . . . ,b

t
db

} ∈ Rdb be the brain feature vec-
tor of the test image and Br

ij =
{
Br

i1,B
r
i2, . . . ,B

r
ini

}
be the

brain feature set for the ith class of representative images; we
calculate the distance between Bt and BR

ij as follows:

d
(
Bt,BR

ij

)
=

1

db

db∑

k=1

(
bt
k − bk

ij

)2
(1)

where bk
ij is the kth element of the jth brain feature vector Br

ij

inside the ith class of representative images.
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The index of the representative image, for which the mapped
brain feature of the input test image is the closest, can be derived
via the following:

(i′, j ′) = argmin
i∈[1,m],j∈[1,ni]

d
(
Bt,Br

ij

)
. (2)

To ensure that such recommended class candidates have the
best possible opportunity to include the true classification re-
sult, we allow a certain level of tolerance by applying (2) not
only to the first minimum value, but also to the second and third
minimum values. As the ith class contains ni representative im-
ages, it is likely that a number of images across different classes
are within the inclusion of the minimum match. If this is the
case, all the brain features are integrated and averaged as a new
brain feature that is then sent to the implicit learning model for
reclassification, as if the brain features of the selected repre-
sentative images were extracted from the EEG signals. Given
that concatenation fusion is widely used in the machine learning
community, examples of which include the inception model of
GoogLeNet [49], applications in multimodal deep learning [50],
etc., we propose to concatenate the input brain feature Bt with
the brain featuresBr from representative images to complete the
reclassification. Such classified results are referred to asC2, and
the direct classification of EEGs via implicit learning is referred
to as C1. On the other hand, if all the index values derived by
(2) are within a single class, this class candidate will be directly
used as the recommended classification result, which is referred
to as C3. Details of such a recommendation test are summarized
as follows:

γc =

⎧
⎪⎨

⎪⎩

C3 if (i′, j ′)∈Br
i′∀i′,j′

C2=ϕ

(
α

η

η∑

k=1

{
Br

i′j′
}
k
+ βBt

)
else

(3)
where γc stands for the recommended class, η is the total number
of brain features that achieve the minimum distance for Bt via
(2), andα and β are the two weighting coefficients balancing the
contributions of Br and Bt, which are determined via empirical
study and training. Finally, ϕ (·) stands for the deep learning
based classification obtained via the implicit learning modality.

To make the final decision for the classification output and in-
tegrate all individual classification results, C = {C1,C2,C3},
we add a simple fusion as follows:

C =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 if C1 = C2 = C3

C3 else if P (C2) < T
⋂

P (C1) < T

C̄ = argmax
C∈[C1,C2]

(δP (C1) , P (C2)) else
(4)

where T is a threshold, which is determined empirically during
the training process,P (C) is the probability thatC is the correct
classification, and δ is an adjustment coefficient designed to
constrain or boost P (C1).

Essentially, (4) is designed to integrate all the classification
results produced by the multimodal information fusion (two
modalities), in which the first choice is straightforward and the
second choice states that if neither C1 nor C2 has sufficient

probability to justify its output, we would directly adopt the rec-
ommended classification as the output. Finally, the third choice
states that the output is the one corresponding to the maximum
probability among P (C1) and P (C2).

IV. DEEP LEARNING BASED MULTIMODAL FRAMEWORK

A. System Overview

Fig. 2 shows an overview of our proposed deep framework. As
seen, the purpose of the real image is two-fold: As the input for
the explicit learning and as the stimuli for evoking brain signals.
The integrated EEG-based brain image classification consists of
four stages, i.e., feature encoding, EEG regression, consistency
test, and information fusion.

In the modality of implicit learning, the information is first
extracted from raw EEG signals to construct brain cognitive
features via an LSTM network, and these features are then fed
into a number of later stages inside the framework, including
the EEG regression stage, the consistency test stage, and the
information fusion stage.

In the modality of explicit learning, on the other hand, the
most representative images of each class are obtained via the
clustering technique, and information is extracted from the im-
age to construct visual features via the CNN, which is referred
to as the feature encoding stage. To introduce the explicit learn-
ing into our framework, we propose to apply a KNN regression
process and map the encoded visual feature into an EEG descrip-
tion, paving the way for the consistency test and hence producing
recommendations for potential classification candidates (C3) as
described in (4).

The consistency test plays a gap-bridging role between the
two modalities of implicit learning and explicit learning, where
the brain features from EEGs and the content features from im-
ages are comparatively tested to estimate their consistency and
fulfil the integration of the two modalities. Following that, a
fusion stage is added to optimize the collective considerations
of these individual classification results and hence deliver the
best possible final classification performances. Under this cir-
cumstance, our fusion design is critical to ensure that both false
positives and false negatives can be significantly reduced.

B. Feature Encoding

The feature encoding stage aims at extracting the brain cogni-
tive feature representation B and the visual feature V from raw
EEG signals and the input images, respectively.

In preparing the modality of implicit learning, the raw EEG
signals are processed through a recurrent module, in which an
LSTM is used as an encoder, and the temporal sequence is pro-
jected into a feature space B ∈ Rdb×n. Specifically, the LSTM-
based encoder network consists of a single LSTM layer and the
regular nonlinear output layer. It takes EEG brain signals as in-
put and produces the brain cognitive features representation B
as output.

To prepare the modality of explicit learning for context sup-
port and complementary classification, we send all represen-
tative images to a CNN-based GoogLeNet [49] encoder to
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Fig. 2. Structural illustration of our proposed deep framework.

produce a set of visual feature vectors aimed toward mapping the
visual content into EEG-compatible brain features. The overall
structure and the relationship among all individual elements are
shown in Fig. 2.

C. EEG Regression

To complete the mapping from the visual content represen-
tation to the brain feature description and ensure that the two
different modalities, implicit learning and explicit learning, are
compatible for integration, we add an EEG regression stage to
project the visual features of the most representative images per
class onto the brain cognitive features B via the visual features
V, producing the EEG description of the most representative
images Br

ij .
The KNN regressor layer has three inputs and one out-

put. The three inputs include the visual feature of the im-
ages V, the visual feature of the representative images Vr,
and the brain cognitive feature B. The output includes the
regressed EEG description of the most representative images
Br

ij . The KNN regressor layer compares the visual features of
the representative images to those of the images, and the K-
nearest images to the representative images are retrieved. After
that, the mean of the brain cognitive features associated with
the K-returned images is calculated and considered to be the
EEG description or characterization of the most representative
images Br

ij .

D. Consistency Test

As it is known that EEGs are often degraded by noise inter-
ference, leading to the possibility that their classifications could
be less reliable, we propose a consistency test to overcome this
problem and help reduce the nonreliability. Given that stim-
uli images presented to human subjects for extracting EEG se-
quences are bounded in the 40 classes inside ImageNet-EEG
[48], we extract ni most representative images from each class
via clustering techniques, and use these representative images to
perform a consistency test on the brain activity analysis result,
i.e., the classified output from the implicit learning modality,

and to determine which representative images it is consistent
with. As a result, the corresponding class can be taken as an
alternative classification result, and we expect that the alterna-
tive classification should be the same as that from the implicit
learning and classification. For those results that differ from each
other, we apply a further fusion stage to finalize the classification
output.

Essentially, the aim of the third stage is to produce the EEG
representation of the consistent set based on the representative
images. On the one hand, the first input of the consistency test
is the brain cognitive feature vector, which is derived from EEG
monitoring of the brain activities Bt. On the other hand, the
second input is the EEG description of the most representative
images Br

ij , which is derived from the EEG regression stage. In
this way, it is guaranteed that both Bt and Br

ij are consistency
testable. In addition, the KNN similarity measure is utilized to
check the similarity between the inputs (Bt and Br

ij) and pro-
duce the K-nearest EEG representations of each image in the
test set based on the EEG description of the representative im-
ages. After that, the mean of the EEG representation associated
with the K representative images is calculated and considered
as the EEG description of the consistent set. Consequently, ei-
ther the classified results are verified by the consistency test or
alternative classifications are produced for further fusion and
integration.

E. Information Fusion

The information fusion stage consists of three main parts,
including ICA, the classifier layer, and the fusion layer. This
stage plays a constructive role in improving the classification
accuracy for the proposed deep framework.

ICA is placed before the layer of classifiers as a feature selec-
tion module, which takes the EEG features B from the LSTM
network as input and returns the independent statistical features
as output. We implement the reconstruction ICA objective func-
tion based on the work reported in [51]. After ICA, two classifiers
have been investigated, including the SoftMax classifier and the
multiclass support vector machine (SVM).
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To optimize the individual classification results derived by
the consistency test and by direct classification of EEG signals,
we add a multimodal information fusion layer, attempting to ex-
ploit both their individual strengths and their complementary ad-
vantages. Regarding the specific multimodal information fusion
algorithm design, our fusion problem contends with two clas-
sification results corresponding to two modalities. On the one
hand, we have direct classification results from the first stage,
and on the other, we have the consistency test results, which
could contradict each other in principle. Therefore, a question
arises: What classification result should we adopt as the final
one in order to maximize the classification accuracy?

Two main approaches have been investigated in our work,
including decision-based multimodal fusion and feature-based
multimodal fusion. In the decision-based multimodal fusion, we
test the probability-based approach, and in the feature-based
multimodal fusion, we further test three techniques, concatena-
tion fusion, SUM, and MAX fusion.

For the probability-based fusion, we use the output probabil-
ity of the classifier layer from both modalities, where the first
modality output is C1 and the second modality outputs are C2

and C3, to determine the final classification result according
to (4). Following the strategy given in (4), the second modal-
ity outputs work as a rectifier to improve the final classification
accuracy.

V. EXPERIMENTS

To evaluate our proposed deep framework and the intro-
duced concept of context-supported multimodal learning, we
conduct three phases of experiments. In the first phase, we try
to evaluate the EEG-based object classification performance for
our proposed deep framework on the publicly available dataset
ImageNet-EEG [48]. In the second phase, we measure the gen-
eralization capability of the proposed framework on a subset of
the visual classification dataset Caltech-101 [52]. By general-
ization capability, we mean how our proposed deep framework
performs if it is applied to classify those objects or images that
have not been seen before. In the third phase, the proposed deep
framework is tested under a transfer learning setup. To bench-
mark our approach with multimodalities, we first compare the
proposed framework with the existing state-of-the-art methods
to verify its effectiveness. Then, we conduct additional evalua-
tions to explore the performance of the proposed framework in
more detail.

A. Experimental Settings and Training Details

Our experiments are conducted on two datasets, including the
EEG-based classification dataset ImageNet-EEG and a subset of
the visual-based classification dataset Caltech-101. ImageNet-
EEG is a publicly available EEG dataset for brain imaging clas-
sification proposed by Spampinato et al. [48]. Caltech-101 in-
cludes 17 classes that coincidentally have the same names as
those in ImageNet-EEG. Hence, those images are selected to
construct the subset utilized to evaluate the generalization capa-
bility of our deep framework. For benchmarking purposes, the

TABLE I
CLASSIFICATION PERFORMANCE COMPARISON BETWEEN OUR PROPOSED DEEP

FRAMEWORK AND THE STATE-OF-THE-ART METHOD [48]

proposed deep framework is compared with the EEG-based ob-
ject classification method [48], which is the latest research work
published in 2017 on the same dataset. We also perform compar-
isons with several of the latest deep learning models for visual-
based object classification, including AlexNet [23], VGGNet-16
[53], VGGNet-19 [53], GoogLeNet [49], and ResNet-101 [24].

In the modality of implicit learning, the iteration limit is set
to 200 and the batch size is set to 440 for the parameters of the
LSTM encoder in the first stage of the proposed deep frame-
work. In the modality of explicit learning, K is set to 3 for the
parameters of the pixel-based clustering and the feature-based
clustering in the first stage of the proposed deep framework.
In the third stage of the proposed deep framework, concerning
the parameters for the consistency test, the number of nearest
neighbours K is set to 3. In the fourth stage of the proposed
deep framework, the number of extracted features from ICA is
set to 70, and the iteration limit is set to 400. Our method is
implemented on the Tesla P100 GPU.

As KNN and clustering employ an unsupervised learning
mode and the CNN is pretrained on ImageNet for visual feature
extraction, all three modules, the KNN regressor, the clustering,
and the CNN, do not need to be trained. The LSTM encoder
is trained on the EEG data with their labels. For the KNN re-
gressor, which attempts to map the features into a user-specific
EEG space, both features at the input are visual features, one
for representative images and the other for training images. For
the consistency test, both inputs for KNN are cognitive features
from the representative images and training images.

B. EEG-Based Object Classification

In the first phase of experiments, we try to validate the effec-
tiveness of our deep framework for EEG-based object classifi-
cation. Our experiments are tested on the standard EEG dataset
ImageNet-EEG. As ImageNet-EEG is collected using a 128-
channel cap with active, low-impedance electrodes (actiCAP
128Ch), it includes the EEG signals of six subjects produced by
asking them to look at visual stimuli, which are images selected
from a subset of ImageNet [54], containing 40 classes with 50
images in each class. During the experiment, each image was
shown on the computer screen for 500 ms.

Table I summarizes the experimental results in terms of the
classification accuracies for both our proposed deep framework
and the existing state-of-the-art method reported in [48]. As
seen, while the precision rate achieved by our proposed deep
framework is 94.1%, the existing state-of-the-art comparison is
82.9%.

To quantify the contribution of each stage designed in our
proposed deep framework, we further carried out experiments
to explore the effectiveness of different configurations of the
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TABLE II
COMPARATIVE ASSESSMENT OF THE PROPOSED FRAMEWORK UNDER DIFFERENT CONFIGURATIONS

Fig. 3. Illustration of the alternative feature-based clustering.

individual stages. For the clustering stage, an alternative consid-
eration is feature based, in which all the deep features of images
inside each class can be clustered instead of their pixels, and
then, the centroids are taken as the most representative deep fea-
tures for their corresponding class (see Fig. 3). For the fusion
stage, individual elements considered include 1) with or with-
out ICA; 2) selection of different classifiers, including SoftMax
and SVM; and 3) choice of different fusion methods, including
probability based, corresponding to the pixel-based clustering,
and feature based, corresponding to the feature-based clustering.
Under the feature-based fusion, we could directly concatenate
features as described in (3) or add every individual element of
the features together as the fusion method (SUM). Finally, we
could also select the most influential feature via MAX

{
Bt,Br

}

(MAX).
Table II reports the experimental results in terms of the clas-

sification precision rates for all the configurations, from which
we can observe and draw a number of conclusions, as described
below.

First, the feature-based clustering in the first stage is better
than the pixel-based clustering method, although the improve-
ment is limited. This occurs if we select SoftMax as the classifier
in the fourth stage of the proposed framework (see Fig. 2). These
results are demonstrated in Table II by configurations 1 and 2.

Second, the performance of the pixel-based clustering is sim-
ilar to (or even better than) the performance of the feature-based
clustering if we select SVM as the classifier in the fourth stage.
These results are demonstrated in Table II by configurations 3 to
6. These results illustrate why we select the pixel-based cluster-
ing method in the first stage when using SVM as the classifier
in the fourth stage.

Third, we find that the SVM classifier is always better than
the SoftMax classifier in the fourth stage. These results are
demonstrated by configurations 1 to 4 in Table II. While the
best performance of the SoftMax classifier is 89.7% (configu-
ration 4), the best performance of the SVM classifier is 92.5%
(configuration 5).

Fourth, we find that the performance of ICA plus SVM is al-
ways better than using SVM alone in the fourth stage. If we use
ICA to reduce the feature dimension, the performance is always
better, as demonstrated by configurations 3–6 in Table II. While
the best performance of the SVM implementation is 92.5% (con-
figuration 3), the best performance of employing ICA plus SVM
is 94.1% (configurations 5 and 6).

Fifth, in the feature-based fusion method, SUM and MAX
are better than concatenation fusion in the fourth stage. This
is demonstrated by configurations 7–12 in Table II. While
the best performance of the concatenation fusion method is
89.5% (configuration 8), the best performance of the SUM/MAX
fusion method is 92.2% (configuration 10). The reason that
the SUM/MAX fusion method outperforms the concatenation-
based fusion is mainly due to the nature of the inputs to the fusion
function. As the inputs are consistent features, the model-free
fusion, SUM/MAX, is more suitable, while the concatenation
fusion requires universal approximation to estimate the model
parameters.

Sixth, the probability-based fusion method is better than the
feature-based fusion. This is demonstrated by configurations
1–12 in Table II. While the best performance of the feature-
based fusion method is 92.2% (configurations 10–12), the best
performance of the probability-based fusion method is 94.1%
(configurations 5 and 6).

Finally, we can conclude that the addition of the explicit learn-
ing modality does help the implicit learning modality achieve
better performances for EEG-based object classification.
Without the explicit learning modality, the best performance
of implicit learning alone is only 90.5% when SVM is used as
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Fig. 4. Scalp distribution of the average energy for all participants and sessions for six categories, including “gun,” “phone,” “desktop PC,” “panda,” “dog,” and
“cat.”

the classifier, and the best performance of the implicit learning
alone is 82.9% when SoftMax is used as the classifier (due to
space limitations, we do not list these results in Table II). With
the addition of the explicit learning modality, however, the best
performance of these settings is 94.1% (configuration 5) and
89.7% (configuration 2).

One novelty of our proposed framework is to integrate explicit
and implicit learning modalities with a similarity-based consis-
tency test on the representative images for every category. While
the representative images are selected via pixel-level clustering,
whether these representative images will truly trigger particu-
lar responses at the brain level for their corresponding classes
remains questionable. To answer this question, we provide an
average energy distribution of six categories for all participants
and all sessions (first row) and the average energy distribution of
the most representative images (second row) in Fig. 4. As seen,
the neural activations of the representative images are close to
that of all images in the same category, and an interesting obser-
vation is that the activations of three objects (“gun,” “phone,” and
“desktop PC”) are different from that of three animals (“panda,”
“dog,” and “cat”). As three adorable animals, the activations of
“panda,” “dog,” and “cat” share some level of similarity, as seen
in Fig. 4, especially in the temporal area, indicating a strong
sensitivity to visual perceptions, such as animal faces. In the
ImageNet-EEG dataset, which includes 40 classes, most of the
categories are not related to human emotions. From the scalp
distribution of the average energy for all participants across all
sessions, however, it is obvious that there exist higher responses
at prefrontal areas, and these EEG data could be used for emotion
classification.

C. Generalization Test for the Proposed Deep Framework

To test our proposed deep framework for its generalization ca-
pability in classifying brain images that are not previously seen
by the framework via EEGs, we carry out the second phase of
experiments on another widely used dataset, Caltech-101 [52].
Caltech-101 has 17 classes that are named the same as those
in ImageNet-EEG, which creates an opportunity for us to carry
out the generalization test by using the corresponding EEG sig-
nal sequences provided in [48]. For the convenience of result

TABLE III
COMPARATIVE GENERALIZATION TEST BETWEEN OUR PROPOSAL AND THE

EXISTING STATE-OF-THE-ART METHOD [48]

analysis and comparative studies, we construct a subset with all
17 classes from Caltech-101 to implement the second experi-
ment, and the 17 classes include airplanes, bass, butterfly, cam-
era, car with side view, cellphone, chair, cup, Dalmatian (dog),
electric guitar, elephant, grand piano, lotus, panda, pizza, re-
volver, watch, and wildcat. The total number of images is 2059,
and the number of images for each class is 121 on average.

Specifically, images from the 17 classes are taken as the input
for GoogLeNet, and the output of the last fully connected layer
is used as the extracted visual features. To maintain the nec-
essary compatibility between the extracted visual features (ex-
plicit learning) and the brain cognitive features (implicit learn-
ing) for a smooth integration of the two modalities, we project
all these visual features onto the brain feature space via the
learned KNN regression module as shown in Fig. 2, and this
is implemented without performing training on any image in
Caltech-101.

The experimental results are summarized in Table III, which
lists the classification performances for both the proposed deep
framework and the existing benchmark [48]. As seen, our pro-
posed framework outperforms the benchmark by 3%, indicating
the following: 1) our proposed framework has a better gener-
alization capability in classifying visual objects not previously
seen, and 2) human visual capabilities can be learned and ex-
changed via machine learning.

For the convenience of further analysis and comparative in-
vestigation, Fig. 5 presents the confusion matrix of each category
for Caltech-101. The rows represent the 17 classes from Caltech-
101, and the first 17 columns represent the corresponding classes
in ImageNet-EEG. The last column is used to represent the rest
of the 40 classes from ImageNet-EEG. As we directly use the
learned models trained via ImageNet-EEG to predict the images
in Caltech-101, we find that some images are incorrectly classi-
fied into classes that do not exist in Caltech-101. In the confusion
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Fig. 5. Confusion matrix, where the rows represent the 17 classes from Caltech-101, and the first 17 columns represent the corresponding classes in ImageNet-EEG.
The column “Others” represents the rest of the 40 classes from ImageNet-EEG.

Fig. 6. Sample images from Caltech-101 and ImageNet.

matrix, these samples contribute to the confusion values labelled
as “Others.”

As seen in Fig. 5, the classification accuracy of the “butterfly”
category is worse than others, only 31%. Additional examina-
tion even indicates that most of the images from this category
are wrongly classified as “parachute” by our framework, which
prompted our further investigation into the results. Additionally,
Fig. 6 shows several sample images from the class “butterfly” in
both Caltech-101 and ImageNet-EEG. As seen, the visual con-
tent from the “butterfly” images of Caltech-101 is obviously very
different from that from the “butterfly” images of ImageNet-
EEG. In other words, although the two classes are named the
same, their images do not have any similarity in terms of visual

objects. In contrast, the visual content from the “butterfly” im-
ages of Caltech-101 is very similar to that from the “parachute”
images of ImageNet-EEG.

D. Transfer Learning via the Proposed Deep Framework

To improve the classification performances of our proposed
deep framework on Caltech-101, we add a training process by
selecting images from the 17 classes of Caltech-101. We do not
want to change the EEG sequences inside ImageNet-EEG [48];
however, the power of transfer learning can be exploited to aug-
ment the EEG-based classification with help from the training
process via images from Caltech-101.

As shown in Fig. 2, the essential integration of the two dif-
ferent modalities of explicit learning and implicit learning is
supported because the compatibility between the visual features
directly extracted from images and the brain cognitive features
extracted from the EEGs is preserved. To this end, we establish
an indirect mapping from the visual level to the brain cognitive
level by transfer learning. In the first round of indirect mapping,
we aim to obtain the brain cognitive level representation of each
image in the training set of the 17 classes in Caltech-101. Specifi-
cally, the visual features extracted from the Caltech-101 images
are further processed by KNN-based regression and then rep-
resent the brain cognitive features. By comparing the extracted
visual features to those of the training images in ImageNet-EEG,
the nearest neighboring images from ImageNet-EEG can be re-
trieved, and the mean of the brain cognitive features associated
with these returned images are taken as the brain cognitive-level
representation of each image in the training set of Caltech-101.
In the second round of indirect mapping, our goal is to obtain the
brain cognitive-level representation of the test images in the 17
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Fig. 7. Classification performance comparison between our proposed deep
framework and the latest deep learning methods as the feature extractors, includ-
ing AlexNet, VGGNet-16, VGGNet-19, GoogLeNet, and ResNet-101, where
SVM is used as the classifier.

classes of Caltech-101. The procedure is very similar to the first
round, and the only difference is that the regression is carried out
between the test set and the training set of Caltech-101 rather
than between the training set of Caltech-101 and ImageNet-
EEG. After the indirect mapping has been constructed, the brain
cognitive-level representations of the training images in the
17-class Caltech-101 set are used to train the SVM classifier,
and those of the test images are used to evaluate our proposed
deep framework.

For the purpose of maintaining fair comparisons, AlexNet
[23], VGGNet-16 [53], VGGNet-19 [53], GoogLeNet [49], and
ResNet-101 [24], which are pretrained by ImageNet, are used
as the feature extractors, and SVM is used as the classifier. The
subset of the 17 classes in Caltech-101 is split into training,
validation, and test sets, with percentages of 80%, 10%, and
10%, respectively. For all of those compared, images from the
training set in the 17 classes of Caltech-101 are used to train
SVM, the validation set is utilized to determine the parameters
of SVM, and we evaluate the performance on the test set.

The experimental results are summarized in Fig. 7, from
which we can see that the classification accuracy of our pro-
posed framework is better than those of all the other approaches.
Considering that our proposed deep framework primarily re-
lies on classification of EEG sequences in ImageNet-EEG and
the training with images from Caltech-101 is only exploited
via the power of transfer learning, our proposed deep frame-
work still remains competitive, particularly since the bench-
mark, GoogLeNet+SVM, directly exploits the training process
with images from Caltech-101, rendering our proposal at a sig-
nificant disadvantage.

For the convenience of further comparative analysis, we
specifically focus on the category of “butterfly” and carry out a
detailed investigation of the performance in the generalization
test. As expected, the performance on “butterfly” is not good
because the visual appearances of the images across the two
datasets are significantly different and uncorrelated. As a re-
sult, a further analysis is conducted to study the performances
after the training procedure. Fig. 8 demonstrates the classifica-
tion accuracies on the category of “butterfly” achieved by our
proposed deep framework and the latest deep learning methods,

Fig. 8. Classification performance comparison between our proposed deep
framework and the latest deep learning methods, including AlexNet, VGGNet-
16, VGGNet-19, GoogLeNet, and ResNet-101, on the category of “butterfly”.

TABLE IV
PERFORMANCE EVALUATION OF THE PROPOSED DEEP FRAMEWORK FOR TWO

DIFFERENT CONFIGURATIONS

including AlexNet, VGGNet-16, VGGNet-19, GoogLeNet, and
ResNet-101. As seen, the classification accuracy of our proposed
deep framework is better than those of all the other methods.
While the “butterfly” classification accuracy achieved by our
deep framework is 90%, the “butterfly” classification accuracies
achieved by AlexNet, VGGNet-16, VGGNet-19, GoogLeNet,
and ResNet-101 are 78%, 79%, 79%, 80%, and 80%, respec-
tively.

To assess the influence of different configurations, we fur-
ther carry out experiments with a range of configurations to
evaluate how the classification performances vary, and Table IV
summarizes the top two results. As seen, configuration 5, which
achieves the highest precision rate in the EEG-based object clas-
sification experiment, also achieves the highest precision rate
and outperforms all the others.

VI. CONCLUSION

In this paper, by integrating implicit and explicit learning
modalities, we propose a novel deep framework for EEG-based
brain imaging classification. Our proposed framework provides
an improved solution for the problem that, given an image used
to stimulate brain activities, we should be able to identify which
class the stimuli image comes from by analyzing the prompted
EEG signals. As the visual cognitive capability of human brains
is primarily researched via fMRI across the neural science and
brain cognitive computing communities, significant challenges
exist for processing EEG sequences, as they are exposed to noise
and a high level of ambiguity exists. To address these challenges,
we exploit the explicit learning widely researched across the ar-
eas of computer vision, digital media, and machine learning. To
this end, we add a consistency test between the cognitive features
extracted from EEG sequences and the visual features extracted
from representative images to produce alternative and improved
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solutions. Extensive experiments support that our proposed ap-
proach outperforms the existing state-of-the-art methods under
various contexts and set-ups. The success achieved not only in-
dicates that EEGs have significant potential for capturing brain
activities for visual cognitive computing, but also opens up a
new direction for explicit learning that, while widely researched
in computer science, could also play significant roles in under-
standing and exploring the human brain.

A number of possibilities can be identified for further re-
search, including applications of our deep framework for
EEG-based brain activity understanding and interpretation, and
testing the reliability and robustness of our framework to-
ward recognition of visual objects and content inside human
brains.
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