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Adaptive Bi-Weighting Toward Automatic
Initialization and Model Selection for HMM-Based

Hybrid Meta-Clustering Ensembles
Yun Yang and Jianmin Jiang

Abstract—Temporal data clustering can provide underpin-
ning techniques for the discovery of intrinsic structures, which
proved important in condensing or summarizing information
demanded in various fields of information sciences, ranging from
time series analysis to sequential data understanding. In this
paper, we propose a novel hidden Markov model (HMM)-based
hybrid meta-clustering ensemble with bi-weighting scheme to
solve the problems of initialization and model selection associ-
ated with temporal data clustering. To improve the performance
of the ensemble techniques, the proposed bi-weighting scheme
adaptively examines the partition process and hence optimizes
the fusion of consensus functions. Specifically, three consensus
functions are used to combine the input partitions, generated
by HMM-based K-models under different initializations, into
a robust consensus partition. An optimal consensus partition is
then selected from the three candidates by a normalized mutual
information-based objective function. Finally, the optimal consen-
sus partition is further refined by the HMM-based agglomerative
clustering algorithm in association with dendrogram-based sim-
ilarity partitioning algorithm, leading to the advantage that the
number of clusters can be automatically and adaptively deter-
mined. Extensive experiments on synthetic data, time series,
and real-world motion trajectory datasets illustrate that our
proposed approach outperforms all the selected benchmarks and
hence providing promising potentials for developing improved
clustering tools for information analysis and management.

Index Terms—Data clustering, ensemble learning, hidden
Markov model (HMM), model selection.

I. INTRODUCTION

TEMPORAL data clustering has been recognized as an
important research field of data mining, it aims to divide
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an unlabeled temporal dataset into groups or clusters, where
coherent or homogeneous information [1] can be revealed.
As the rapid growth of temporal data, various temporal
data clustering algorithms have been developed from dif-
ferent perspectives [2]. Some algorithms [3]–[9] intend to
partition raw temporal data, or the feature vectors extracted
from them in form of static data, and hence called the
proximity-based approach and feature-based approach. Other
algorithms [10]–[21] are proposed to model the generation of
temporal data, and identify the cluster structures of tempo-
ral data via determining the model structures and parameters.
Such algorithms are often called model-based approach.

In model-based approach, each cluster can
be mathematically represented by a parametric
model, such as Gaussian smodel [21], hidden
Markov model (HMM) [10], [11], autoregressive
moving-average model (ARMA) [12], [13], mixture of
Markov chain [14]–[16], fuzzy-based estimation model [17].
Among them, HMM-based clustering approaches have been
widely studied for the last decade. Its earlier work [22], [23]
focused on speech recognition. Recently it has been suc-
cessfully expanded into general temporal data clustering
applications [10], [11], [18]–[20] due to its superiority in
capturing dynamic behaviors of temporal data. However,
many HMM-based clustering algorithms still suffer from
the critical problem of model selection, i.e., detecting the
intrinsic number of clusters and initialization sensitivity.

Existing research on model selection remains active, and
many algorithms have been reported in [24]–[29], though
no universal model selection has been reported and well
accepted for general clustering tasks. This is due to the
fact that clustering performances are highly dependent on
the matching between cluster structures of the target dataset
and the selection of clustering techniques. Regarding the way
of determining the number of clusters, existing approaches
can be classified into two categories: 1) external determi-
nation and 2) internal determination. In the first category,
the number of clusters is externally determined by opti-
mizing the predefined criterion, such as Akaike informa-
tion criterion [24], Bayesian information criterion (BIC) [25],
and minimizing description length [16]. Recent empirical
studies on model selection [30], [31], however, reveal that
most of the existing criteria has limitations, leading to the
problem that the cluster number is either over estimated or
under estimated. In the second category, clustering algorithm
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itself is able to gradually update the structure of clusters
during an iterative learning process, and the number of
clusters can be internally determined until a stop criterion is
reached. Typical examples include DBSCAN [26], adaptive
K-means [27], fuzzy adaptive clustering [28], and adaptive
fuzzy C-means clustering [29]. Although such approaches
have shown promising results to an extent, most of them still
suffer from the problem of initialization sensitivity.

In fact, ensemble learning techniques [32]–[39] were orig-
inally developed for classification tasks. It is recently applied
to the clustering tasks [10], [40]–[43], and attempt to improve
the robustness of clustering by combining multiple cluster-
ing into a single consensus solution, which normally achieves
better results in terms of average performance among input
single clustering solutions, leading to a potential solution for
the initialization problem. Although such techniques have been
intensively studied, it is still a serious challenge to harmoni-
cally combine the various clustering solutions into an optimal
ensemble clustering without supervised information.

Motivated by our early studies [2], [5], [6], [44], we pro-
pose in this paper an HMM-based hybrid meta-clustering
ensemble model with a bi-weighting scheme. In our approach,
the ensemble technique is used to tackle the initialization
problem, which is caused by HMM-based K-models dur-
ing initial clustering analysis. Our proposed ensemble model
achieves an optimal reconciliation of input partitions via the
proposed bi-weighting scheme, where the weights to the
partitions and clusters are, respectively, assigned in accor-
dance with their level of importance. Further, the HMM-based
agglomerative clustering is applied to improve the consen-
sus solution with automatic model selection by introducing
the concept of dendrogram-based similarity partitioning algo-
rithm (DSPA) [5]. In summary, our contributions reported in
this paper can be highlighted as follows.

1) We propose a novel HMM-based hybrid meta-clustering
ensemble approach to solve both the initialization
problem and the model selection problem, in order
to keep the benefits of using hybrid approaches for
temporal data clustering.

2) We propose a novel bi-weighting scheme to optimally
reconcile the input partitions into a single consolidated
clustering solution, where both the partition and the clus-
ter weights are intrinsically derived from the objective
function of the clustering ensemble without any prior
information.

The rest of this paper is organized as follows. Section II
presents the most common model-based clustering methods,
and overview of HMM-based clustering. Section III describes
the motivation and our approach, together with the details of
major techniques developed. Section IV reports the experimen-
tal results on various temporal datasets. Section V discusses
the issues related to our approach, and finally, the conclusions
are drawn in Section VI.

II. RELATED WORK

In this section, we review the most common model-
based clustering algorithms, and give an overview of the
HMM-based clustering.

A. Model-Based Clustering

For model-based clustering algorithm, it is very important
to select an appropriate model for target clustering tasks, such
as Gaussian model, HMM, ARMA, mixture of Markov chain.
However, the model type is always specified as prior informa-
tion, and need to be predefined as a use-input for model-based
algorithms.

Gaussian mixture models are popular among model-based
approaches for a so-called speaker verification. The fuzzy
c-means clustering-based normalization method [21] is one
example in finding a better score to be compared with a given
threshold for accepting or rejecting a claimed speaker. It
overcomes the drawback of assuming equal weight for all
the likelihood values of the background speakers in current
normalization methods.

HMM-based clustering have been widely studied from
two categories of approaches: 1) partitioning approach, such
as HMM-based K-models [11] and 2) hierarchical approach,
such as HMM-based agglomerative clustering [18] and HMM-
based divisive clustering [19]. In addition to such standard
approaches, HMM-based hybrid partitioning-hierarchical clus-
tering and its variants [20] have also been reported to exploit
the strengths of partitioning and hierarchical approaches.

ARIMA model [45] is originally designed as a combination
of three types of temporal processes, including autoregressive,
integrated, and moving average processes. While a stationary
ARIMA model with autoregressive and moving average order
is also known as ARMA model. In this paper [12], a mixture
of ARMA models is commonly used for clustering time series.
It is assumed that the time series are generated by k different
ARMA models, where each component model corresponds to
one cluster of interest, and an EM algorithm is derived for
learning the mixing coefficients as well as the parameters of
the component models.

Finite mixtures of Markov chains [14], [16] have also been
proposed for clustering time series. The number of clusters can
be determined by comparing different choices based on some
scoring scheme. One possibility, used by Cadez et al. [16],
is related to minimizing the description length. Another
approach [15] to the clustering of time series modeled by
Markov chains is called Bayesian clustering by dynamics.
In this approach, each time series is initially mapped into
a Markov chain, with its dynamics represented simply by
a transition probability matrix. It then goes through an agglom-
erative procedure by trying to merge the two closest Markov
chains at each step, using the Kullback–Leibler (KL) distance
measure [46] between transition probability matrices. Based
on a greedy heuristic search approach, this procedure contin-
ues until the resulting model is found to be less probable than
the model before merging. Thus, the number of clusters can
be determined automatically.

B. HMM-Based Clustering

HMM has outstanding ability to model the dynamic
behaviors of temporal data. It is defined as an unobservable
stochastic process consisting of a finite number of states,
each of which is related to another stochastic process
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that emits observations. As a production process of
HMM-generated data, an observation ot is initially emit-
ted with an emission probability bit at the state i, which
is selected according to the initial probability π i. The next
state j is decided by the state transition probability aij, and
an observation ok is also generated based on an emission
probability bjk at the state j. The process repeats until a finite
number of observations are generated. Essentially, the entire
process produces a sequence of observations instead of the
states, from which the name “hidden” is drawn. The com-
plete set of HMM model parameters is described by a triplet
λ = {π, A, B), where π = {πi}, A = {aij}, B = {bi} repre-
senting the initial probability, the state transition probability,
and the emission probability. For continuously valued tem-
poral datasets, such as time series, the emission probability
of each state can be defined by a multivariate Gaussian dis-
tribution. Without losing generality, we define the emission
distribution function of continuously valued temporal data as
a single Gaussian distribution bi = {μi, σ

2
i } in order to reduce

the computational cost and prevent the risk of over-fitting. As
a result, the temporal datasets can be modeled as a set of K
HMMs {λ1, λ2, . . . , λK} with S states based on such single
Gaussian distributed observations. Each component consists
of the following parameters.

1) A S-dimensional initial state probability vector π .
2) A s× s state transition matrix A.
3) Mean vector {μ1, μ2, . . . , μS}.
4) Variance vector {σ 2

1 , σ 2
2 , . . . , σ 2

S }.
In HMM-based K-models [2], the entire dataset X =
{xn}Nn=1 is represented as a set of K HMMs {λk}Kk=1. Initially
the parameters of K HMMs are estimated on K data points,
which are randomly selected from X without any replacement.
Then, forward and backward algorithm [47], [48] is applied to
calculate the log-likelihood of each data point under K HMMs,
and assign data points to the HMM with maximum value of
log-likelihood. After that, the parameters of K HMMs are re-
estimated on the corresponding group of data points by EM
algorithm [49]. The entire process is repeated until the cluster
memberships no longer change.

In HMM-based agglomerative clustering [18], N HMMs
{λn}Nn=1 are initially trained on the entire dataset X = {xn}Nn=1.
The closest pair of clusters is then iteratively merged into
a new cluster, and the parameters of HMM representing the
new cluster are re-estimated by EM algorithm until a stop cri-
terion is reached. In this approach, a symmetric version of KL
distance [46] is defined as

DS
(
λi, λj

) = 1

2

[
DKL

(
λi, λj

)+ DKL
(
λj, λi

)]

= 1

2

∑

x

p(λi)
[
log p(x|λi )− log p

(
x
∣∣λj

)

+ log p
(
x
∣∣λj

)− log p(x|λi )
]
. (1)

HMM-based hybrid clustering [20] is proposed by
combining partitioning and hierarchical approaches. In this
approach, the whole dataset is initially partitioned into K
clusters (K is normally greater than the intrinsic number of
clusters K*) by HMM-based K-models. The initial K clusters

are then treated as the input of HMM-based agglomerative
clustering, where the close clusters are iteratively merged
until a stopping criterion is reached. In association with
HMM-based K-models, HMM-based agglomerative clustering
significantly reduces its computational cost during its merging
process.

HMM-based hybrid meta-clustering is designed to make
further improvements on HMM-based hybrid clustering. It
treats initial clusters produced by HMM-based K-models as
meta-data, and iteratively merges them into meta-clusters rep-
resented by composite models via HMM-based agglomerative
clustering. During the merging process, parameters of compos-
ite models are simply obtained by combining the parameters of
their child models without re-estimation. As a result, the com-
putational cost of the agglomerative clustering can be further
reduced. In this approach, the distance between two composite
models I and J is defined as

D(λI, λJ) = 1

|λI | × |λJ|
∑

λi∈λI

∑

λj∈λJ

DS
(
λi, λj

)
(2)

where λI and λJ represent composite model I and J, while λi

and λj are the child model of the composite model I and J,
respectively.

III. PROPOSED HYBRID META-CLUSTERING ENSEMBLE

WITH BI-WEIGHTING SCHEME

In this section, we first describe the motivation of proposing
our approach, and then present an HMM-based hybrid meta-
clustering ensemble with a bi-weighting scheme. We then
systematically describe the bi-weighted clustering ensemble
model as the major component of our approach, supported
by a consensus function and normalized mutual-information
(NMI) based objective function. Finally, a refinement func-
tion with model selection is described in detail to finish the
design of our proposed approach.

A. Motivation

As a matter of fact, each of the aforementioned HMM-based
algorithms has different limitations for temporal data clus-
tering. HMM-based K-models suffers from both of the ini-
tialization and model selection problems, while HMM-based
agglomerative clustering becomes infeasible in practical appli-
cations for large temporal dataset due to its higher com-
putational cost. Although HMM-based hybrid clustering [20]
achieves better performance in comparison with both of
HMM-based K-models and agglomerative approaches, it still
cannot avoid the initialization problem during the initial parti-
tioning process, leaving the major problem of model selection
unresolved. As an improved version of HMM-based hybrid
clustering, HMM-based hybrid meta-clustering gains benefits
from adopting composite models. Such composite models are
not only good at capturing the complex structures of clusters,
but also require no re-estimations for the model parameters.
However, the model selection and initialization problems are
still unsolvable in such an approach.

Empirical studies [50]–[54] support that, generally, ensem-
ble techniques outperform the single clustering algorithm, and
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provide a potential solution for the initialization problem. In
our earlier work [5], the essence of the clustering ensemble is
explored in depth as such that a “mean” partition of the input
partitions can be taken as the consensus if all possible parti-
tions of the target dataset are known. In practice, only subsets
of partitions are given, and hence the weighted mean of input
partitions is appropriate for a consensus solution, where the
weights of input partitions are normally determined by clus-
tering quality, which is often referred to as the amount of
contributions to the consensus solution. Without providing the
priori labeling information about the target dataset, however,
it is not possible to precisely evaluate the clustering quality of
input partitions.

In this paper, we try to solve both of the initializa-
tion problem and the model selection problem by proposing
an HMM-based meta-clustering ensemble model with a bi-
weighting scheme. To solve the initialization problem, an
optimal reconciliation of input partitions is achieved by using
the proposed bi-weighting scheme. Essentially, such a weight-
ing scheme not only assigns weights to input partitions based
on the clustering quality, but also assign the weights to clusters
based on their dominance in the corresponding partition. Given
a formal analysis described in Section III-C1, both weights can
be intrinsically derived from the objective function of cluster-
ing ensemble. To automatically detect the number of clusters
and hence strengthen the solution for the model selection
problem, a refinement function is further introduced, where the
optimal consensus partition is refined by the HMM agglomera-
tive clustering algorithm in association with DSPA. Due to the
use of hybrid approach, the computational cost of DSPA is sig-
nificantly reduced to O(Ko2

) in comparison with our previous
work [5], where DSPA is directly applied to a N × N sim-
ilarity matrix, and result in a computation cost of O(N2).
Here, N is the number of the data points, and Ko is the
number of clusters resulted in the optimal consensus partition,
N >> Ko.

B. Description of Our Proposed Approach

As illustrated in Fig. 1, our proposed approach consists
of three modules, including initial clustering analysis, bi-
weighted clustering ensemble, and final refinement function
with model selection, details of which are highlighted as
follows.

1) In initial clustering analysis module, diverse partitions
of target dataset are generated by HMM-based K-models
clustering algorithm with different initializations, where
the cluster number is randomly selected from a preset
range for each partition.

2) In bi-weighted clustering ensemble module, these ini-
tially generated partitions are, respectively, combined
into consensus partitions by three consensus functions
[cluster-based similarity partitioning algorithm (CSPA),
hypergraph-partitioning algorithm (HGPA) and meta-
clustering algorithm (MCLA)] [51] with bi-weighting
scheme, then an NMI-based objective function is
adopted to select the optimal one from three consensus
partitions.

Fig. 1. Overview of our proposed approach.

3) In final refinement function with model selection
module, a final partition is then obtained by further
refining optimal consensus partition in a hierarchical
structure, where the closest pair of clusters is
merged as a composite model based on the distance
defined in (2). In association with DSPA, such
merging process is repeated until the final par-
tition with the intrinsic structure of clusters is
obtained.

C. Bi-Weighted Clustering Ensemble

To ensure that both clusters and their partitions make con-
structive contributions to the consensus solution according
to their level of importance, we introduce a bi-weighting
scheme to optimize the integration of input partitions. In
this way, not only the weights are globally assigned to the
input partitions based on their clustering quality, but also
the local assignment of weights can be made adaptive to
their dominance of clusters that produces the corresponding
partition.

1) Bi-Weighting Scheme: Given a distance D, a consen-
sus function of the weighted clustering ensemble is essentially
to find a consensus partition Pr close to multiple input par-
titions {Pm}Mm=1, which are obtained from the target dataset
{xn}Nn=1. Therefore, the consensus function can be formulated
as minimizing the following loss function [55]:

L =
∑

m

wmD
(
Pm, Pr) (3)

where wm refers to the weight of partition Pm,
∑

m wm = 1.
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In model-based clustering, each input partition Pm can
be mathematically represented as a mixture of probability
distributions pm(xn) = ∑

km
p(km)p(xn|λm

km
), where {λm

km
}Km
km=1

are the mixture model parameters, Km is the number of
clusters cm

km
(x) = p(x|λm

km
) resulting in each of the input par-

titions, and p(km) is the prior probability. Based on the KL
distance [46], the loss function given in (3) can be further
derived as

L =
∑

m

wmDKL(pm, pr)

=
∑

m

wm

∑

n

pm(xn) log
pm(xn)

pr(xn)

=
∑

m

wm

∑

n

∑

km

p(km)p
(
xn

∣∣λm
km

)
log

pm(xn)

pr(xn)

=
∑

m

wm

∑

km

p(km)

[
∑

n

p
(
xn

∣
∣λm

km

)
log pm(xn)

−
∑

n

p
(
xn

∣
∣λm

km

)
log pr(xn)

]

=
∑

m

wm

∑

km

p(km)
[−H

(
cm

km
, pm

)+ H
(
cm

km
, pr

)]

=
∑

m

wm

∑

km

p(km)
[−H

(
cm

km

)− DKl
(
cm

km
, pm

)

+ H
(
cm

km

)+ DKl
(
cm

km
, pr

)]

=
∑

m

wm

∑

km

p(km)
[−DKl

(
cm

km
, pm

)+ DKl
(
cm

km
, pr

)]

=
∑

m

wm

∑

km

p(km)
[−DKl

(
cm

km
, pm

)]

←−−−−−−−−−−−−−−−−−−−−−−→
+

∑

m

wm

∑

km

p(km)
[
DKl

(
cm

km
, pr

)]

←−−−−−−−−−−−−−−−−−−−−→
L1 L2

(4)

where H(p) = H(X) = −∑
n p(xn) log p(xn) is the Shannon’s

entropy [56] for X = {xn}Nn=1. According to the informa-
tion theory, it measures uncertainty of a system, the bigger
the value of the entropy, the less similarity between the
system members. H(p, q) = −∑

n p(xn) log q(xn) is the
cross entropy between two probability distributions p and q.
The KL distance between p and q can also be defined as
DKL(p, q) = H(p, q)− H(p).

The loss function in (4) can be decomposed into two
separate loss functions L1 and L2, which manifest that the
performance of a clustering ensemble depends on both the
quality of input partitions and the clustering ensemble. As
the first term L1 corresponds to the quality of input parti-
tions, a smaller value of L1 indicates a better quality of input
partitions. Indeed, the objective of clustering is to separate
the dataset into different groups or clusters as such that the
data points inside the same cluster should be less dissimilar,
where the dissimilarity is determined by an intracluster dis-
tance, and the dissimilarity across the different clusters should
be larger, determined by an intercluster distance. By taking
a close look at DKl(cm

km
, pm) = H(pm)−H(cm

km
) shown in (4),

we realize that H(pm) just refers to the dissimilarity of clusters
resulting in partition Pm corresponding to intercluster distance,
while H(cm

km
) refers to the dissimilarity of data points inside the

cluster Cm
km

corresponding to intracluster distance. As a result,

the clustering quality of input partition Pm can be quantified as

Qm =
∑

km

pr(km)
[
−DKl

(
cm

km
, pm

)]
. (5)

The smaller value of Qm indicates a better quality of input
partition, where the intracluster distance should be small and
the intercluster distance should be large.

Intuitively, the partition weights could be determined by
minimizing L1, where larger weights should be assigned to
the better quality partitions as determined by smaller value of
Qm. However, such simple scheme eventually allocates a sin-
gle maximum weight to the input partition with the smallest
value of Qm, and all other weights are set to zero. Under this
circumstance, the consensus function is turned into a selec-
tion function. To prevent such situation and make all input
partitions contribute to the consensus solution, we introduce
a regularization term wm log wm [57], which represents the neg-
ative entropy of partition weights, into L1 to form a regularized
loss function

L3 =
∑

m

⎡

⎣wm

∑

km

pr(km)
[−DKl

(
ckm , pm

)]+ αwm log wm

⎤

⎦

=
∑

m

[
wmQm + αwm log wm

]
(6)

where α ≥ 0 is a coefficient that controls the strength of the
added regularization term, and increasing its value will whip
the enthusiasm of input partitions for clustering ensemble. In
our experiments, we set α = 0.5.

Consequently, the appropriate partition weights can be
determined by minimizing L3 [57]

wm = exp(−Qm/α)
∑

m exp(−Qm/α)
. (7)

Once the input partitions and their corresponding weights are
determined, the first term L1 of L is fixed, and hence the
performance of clustering ensemble is primarily controlled
by L2. Therefore, minimizing L is equivalent to minimiz-
ing the value of L2. To optimize the process, we introduce
a double layer-weighting scheme to determine the consensus
partition that is close to all clusters. Inside the loss func-
tion: L2 = ∑

m wm
∑

km
p(km)[DKl(cm

km
, pr)], the first layer

weights are the partition weights obtained in (7), and the sec-
ond layer weights are obviously the weights of clusters, which
are defined as

wm
km
= p(km) = Nm

km

N
(8)

where Nm
km

is the number of data points in the cluster Cm
km

resulted in partition Pm, and N is the total number of data
points.

2) Consensus Functions With Bi-Weighting Scheme:
Existing work on cluster ensemble [51] applies three
hypergraph-based consensus functions to produce the consen-
sus partition, and multiple input partitions need to be initially
mapped onto a hypergraph H by concatenating all binary
membership indicators H = {Hm}Mm=1. Such indicators are
obtained by mapping each input partition Pm on {xn}Nn=1 into
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Fig. 2. Example of hypergraph.

an adjacency matrix Hm = {hm
km
}Km
km=1

. In such hypergraph,
the vertices refer to a dataset of N objects {xn}Nn=1, whilst
hyper-edge hm

km
connecting a set of vertices indicates which

objects belonging to the clusters km in partition Pm. One hyper-
graph is illustrated by a simple example shown in Fig. 2.
To further improve the hypergraph-based consensus partition
via our proposed bi-weighting scheme, we develop a weighted
hypergraph as

G =
{√

wmGm
∣∣
∣∣G

m =
{√

wm
km

hm
km

}Km

km=1

}M

m=1
. (9)

In our approach, we apply three existing hypergraph-based
consensus functions [51] on the weighted hypergraph to gen-
erate consensus partitions. These include CSPA, HGPA, and
the MCLA [51]. The characteristics of these three consensus
partitions can be briefly summarized as follows.

1) CSPA is a straightforward consensus function, where
a similarity matrix S for input partitions encoded in
a weighted hypergraph is derived from G : S = GGT ,
and then the similarity matrix S is simply partitioned
by a graph-based clustering algorithm (METIS) [58] to
yield a consensus partition.

2) HGPA offers an alternative consensus function by cast-
ing the clustering ensemble problem on how to partition
the weighted hypergraph by cutting minimal weighted
hyper-edges. In this approach, hypergraph partitioning
package (HMETIS) [59] is used to segment hyper-
graph G to obtain a consensus partition. Unlike the
CSPA that takes the local piecewise similarity into
account, HGPA considers a relatively global relationship
among target dataset across multiple input partitions.

3) MCLA reaches a consensus solution by applying meta-
clustering on weighted hypergraph G. In this approach,
all the clusters represented by hyper-edges of hyper-
graph G are grouped into meta-clusters, and then these
meta-clusters are further collapsed by assigning each
data point to the collapsed hyper-edges, where its par-
ticipation remains the strongest.

3) Objective Functions: Without the prior information, it
is impossible to select a proper function in advance to form
a clustering ensemble. By using the existing solutions, we
adopt the NMI-based objective function [51] to determine
the optimal consensus partition. Among the three candidates,
the optimal consensus partition is selected as the one that
possesses the maximum average mutual information with all
M input partitions obtained from the initial clustering analysis

module. Such objective function is defined as

Po = arg max
1≤r≤R

M∑

m=1

NMI
(
Pr, Pm)

= arg max
1≤r≤R

M∑

m=1

∑Kr
i=1

∑Km
j=1 Nrm

ij log
( NNrm

ij
Nr

i Nm
j

)

∑Kr
i=1 Nr

i log
(

Nr
i

N

)
+∑Km

j=1 Nm
j log

(Nm
j

N

)

(10)

where Pm is the mth partition obtained from the initial
clustering analysis, Pr is a consensus partition generated by
the rth consensus function, and Po is the optimal consensus
partition. Kr and Km represent the number of clusters resulted
in Pr and Pm on a dataset of N data points, respectively.
Nrm

ij is the number of shared data points between the cluster
Cr

i ∈ Pr and the cluster Cm
j ∈ Pm, Nr

i and Nm
j are the number

of data points in Cr
i and Cm

j , respectively.

D. Final Refinement Function With Model Selection

Unlike the model-based approaches, three consensus func-
tions (CSPA, HGPA, MCLA) can only obtain the labeling
information for consensus partitions, and these consensus par-
titions are produced with predefined number of clusters, such
as maximum number of clusters resulted in the input partitions.
Following that, the optimal consensus solution is selected from
three consensus candidates. In order to optimize such consen-
sus solution with intrinsic number of clusters via HMM-based
agglomerative clustering, we re-estimate the parameters of
HMMs representing the clusters of optimal consensus parti-
tion Po, and then refine it into a final partition P∗, where
similar clusters in Po are merged into a meta-cluster repre-
sented by a composite model [20], which is proved to be
better in capturing the complex structure of clusters in P∗.
Such merging process could be achieved by applying HMM-
based agglomerative clustering in association with DSPA. This
achieves the major advantage that the number of clusters in
the final partition can be automatically determined. The entire
process of final refinement function can be described as the
following steps.

1) Train the component HMMs on the clusters of optimal
consensus partition Po.

2) Iteratively merge the closest clusters obtained in parti-
tion Po into a meta-cluster represented by a composite
model. Such process produces a hierarchical structure of
clusters named as dendrogram. Inside the dendrogram,
the horizontal axis indexes the clusters of optimal con-
sensus partition Po, and the vertical axis indicates the
distance between the meta-clusters, which is illustrated
in Fig. 5.

3) Obtain the final partition P∗ with the intrinsic num-
ber of clusters K∗ by cutting the dendrogram at the
largest range of dissimilarity between successive merged
clusters.

IV. EXPERIMENTS

In this section, we conduct our experiments on three sets
of datasets, including HMM-generated dataset, benchmarking
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Fig. 3. HMM-generated dataset.

time series, and CAVIAR database of motion trajectories to
evaluate the effectiveness of our proposed approach from dif-
ferent perspectives. Initially we carry out an experiment with
HMM-generated dataset to test the fundamental idea of the
proposed approach, and then we evaluate the performance of
our approach on the benchmarking time series dataset to illus-
trate that our approach works for general clustering, and finally
our approach is validated on CAVIAR database for real-world
applications. Due to the fact of that classification accuracy [2]
is commonly adopted by many existing algorithms in the pub-
lished literature, we also evaluate performance of the tested
algorithms by using this criterion in our experiments. The
source code of implementing our approach is available upon
request.

A. Experimental Settings and Datasets

The first dataset for our experiments is an HMM-generated
dataset, which consists of 200 sequences generated by a mix-
ture of four HMM models with two hidden states, and each
component generates 50 sequences with an identical length of
200 as illustrated in Fig. 3. The parameters of four components
are set as follows.

1) The initial state probabilities πk are randomly generated
from uniform distribution.

2) Transition matrices Ak are defined as

A1 =
[

0.6 0.4
0.4 0.6

]
A2 =

[
0.4 0.6
0.6 0.4

]
A3 =

[
0.3 0.7
0.7 0.3

]

A4 =
[

0.7 0.3
0.3 0.7

]
.

3) Emission distribution corresponding to each state is
characterized as a single Gaussian with mean and vari-
ance {μk, σ

2
k } : {3, 1}, {3, 1}, {3, 1}, {3, 1} for state 1,

and {0, 1}, {0, 1}, {0, 1}, {0, 1} for state 2.
With this synthetic dataset, we evaluate the model selection

ability of our approach in comparison with the existing

methods based on BIC. Further, we also compare the proposed
approach with five HMM-based clustering algorithms,
including HMM-based K-models, HMM-based agglomer-
ative, HMM-based hybrid clustering, HMM-based hybrid
meta-clustering, and HMM-based hybrid meta-clustering
ensemble [2] from perspectives of classification accuracy and
computational efficiency. In this part of experiments, the com-
pared HMM-based approaches are parameterized with the
number of states S = 2 and the number of clusters K = 4. To
quantify the contribution of our proposed ideas on individual
basis, we also implemented a prototype of the HMM-based
hybrid meta clustering ensemble without bi-weighting, and its
final partition is produced with a predefined number of clus-
ters K = 4. All tested algorithms are run ten times, and an
average classification accuracy is listed in Table II in the form
of mean ± std.

Further, we examine our approach for general temporal
data clustering tasks by using a collection of 16 time series
benchmarking datasets [60]. The information of these datasets
is detailed in Table I, including the number of classes, size
of dataset, and the length of time series in each dataset.
With these benchmarking time series, we initially compare
our approach with five baseline algorithms including K-means,
dynamic time warping (DTW) based K-means [3], HMM-
based K-model, HMM hybrid clustering and HMM hybrid
meta-clustering. In order to validate the effectiveness of our
proposed bi-weighting scheme, we also compare our approach
with its prototype that is HMM hybrid meta-clustering ensem-
ble. Due to the fact that all algorithms compared here do not
have the capability of automated model selection, we have to
manually select the appropriate state number of HMMs from
a range of candidates for each time series in the collection
by using forward and backward algorithms [47], [48], and the
correct numbers of clusters are also provided for the first five
baseline algorithms for verification purposes. We run each
algorithm ten times with optimal parameter setting and the
best results of the tested algorithms are reported in Table III.

To evaluate our proposed approach in real-world appli-
cations, finally, we take CAVIAR database [61] as another
benchmarking dataset to run the experiments, which consists
of 222 high-quality motion trajectories, examples of which are
summarized in Fig. 4. As seen, all the motion trajectories in
the database are manually annotated from video sequences
of pedestrians, and represented as 2-D temporal data. For
configuration of HMMs, we use forward and backward algo-
rithms again to determine the appropriate state number within
a preset range, which has maximum log-likelihood for the
estimated HMMs.

In our experiments, our approach runs the HMM K-models
ten times as the initial clustering analysis by choosing a K
value from a preset range (8 ≤ K ≤ 18 is defined in the
experiment with CAVIAR database, and K∗−1 ≤ K ≤ K∗+3
in the rest of the experiments) under different initializations.
After that, ten partitions of initial clustering analysis are fed to
the bi-weighted clustering ensemble model to yield the optimal
consensus partition, and such optimal consensus partition is
further refined into a final partition with the intrinsic structures
of clusters.
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TABLE I
INFORMATION OF TIME SERIES BENCHMARKING DATASETS

Fig. 4. CAVIAR database with 222 manually annotated trajectories.

B. Experimental Results and Analysis

1) Fundamental Performance Analysis: Fig. 5 illustrates
the dendrogram obtained by applying our approach to
HMM-generated dataset, where the correct number of clus-
ters (K* = 4) can be determined by cutting the dendrogram
at a threshold value corresponding to the largest range of dis-
similarity between successive merged clusters during the final
refinement process. For comparison purposes, we also apply
our approach to the target dataset by fixing the cluster size in
the range of 2 ≤ K ≤ 10 instead of using DSPA, and then cal-
culate the BIC values on different numbers of clusters resulted
in the final partition. As shown in Fig. 6, the optimal number
of clusters is selected as six with a minimum value of BIC,
indicating a failure of the BIC-based model selection method.

Table II shows the results of six HMM-based approaches
on HMM-generated dataset in term of classification accu-
racy and computational efficiency. From the perspective of
classification accuracy, it can be seen that the top four
baseline algorithms without model selection produce higher
standard deviation for the classification accuracy, indicating
that the performances of such algorithms are un-stabilized
due to the model initialization problem. This is especially true
with the HMM-based K-model, due to the fact that it is quite

Fig. 5. Dendrogram of the final partition on HMM-generated dataset.

Fig. 6. BIC values of different cluster numbers on HMM-generated dataset.

TABLE II
RESULTS ON HMM-GENERATED DATASET

sensitive to model initialization, which is clearly demonstrated
by its largest value of standard deviation. In contrast, HMM-
based hybrid meta-clustering ensemble makes improvement in
term of the classification accuracy and initialization sensitiv-
ity. This is demonstrated by its higher average of classification
accuracy and smaller standard deviations. By introducing the
bi-weighting scheme and the refinement function with the abil-
ity of automatic model selection, it can be seen from the
results that our proposed approach achieves the best average
of classification accuracy with the smallest standard devia-
tion among all the tested algorithms. From the perspective
of computational efficiency, Table II also reports the CPU
time of implementing these HMM-based approaches. While
the ensemble approaches achieve higher classification accura-
cies, as seen, they are generally slower than single algorithms
due to the fact of that generation of input partitions con-
sumes a large amount of computing resource. Compared with
the HMM-based agglomerative clustering algorithm, how-
ever, our proposed still requires less computing resources, yet
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TABLE III
RESULTS ON TIME SERIES BENCHMARKING DATASETS—CLASSIFICATION ACCURACY (%)

significantly improves the classification accuracy with both the
model selection and initialization problems resolved.

2) Benchmarking Analysis: Table III shows the experiment
results on the benchmarking datasets of time series, from
which it can be seen that our approach wins the first place
by achieving the best performance on 8 out of 16 datasets.
While DTW-based K-means achieves the best results for three
datasets, and all others only win on one dataset, respectively.
It is worth mentioning that these baseline algorithms imple-
mented by providing the intrinsic number of clusters actually
take the advantage of our approach without such prior informa-
tion. In order to examine the model selection capability of our
approach in different versions, we mark the classification accu-
racies in Table III with a * symbol if their clustering results
are achieved with the correct cluster number determined. As
seen, our approach is able to find the correct cluster number
on 12 out of 16 datasets, yet the BIC-based method can only
manage seven datasets.

In fact, all these approaches compared in Table III try
to solve the temporal data clustering problems from differ-
ent perspectives. K-means simply uses Euclidean distance to
measure the similarity between time series based on local
comparisons, where the time series are aligned point by
point. As shown in Table III, such baseline algorithm fails
to achieve satisfactory results, especially when the observa-
tions of time series are shifted, such as Gun-Point, CBF, and
Two Patterns. In order to overcome such limitations, a DTW
distance [4] is developed to determine a warping distance
out of the best alignment between two time series. From
the results shown in Table III, it can be seen that DTW-
based K-means outperforms standard K-means on 12 out of
16 datasets. For high dimensional time series, such as OSU
Leaf, Lightning-2, and Yoga, however, the results achieved
by DTW-based K-means show little improvement, yet take
a considerably longer time than other algorithms. While
HMM-based approaches manage to capture the cluster struc-
tures by considering the temporal information of the time
series, the improvement achieved are still limited. Comparative
studies on the results listed in Table III indicate that our
approach achieves the best performance in term of both model

selection and classification accuracies. It typically works well
for high dimensional time series, and achieves the best results
for the longest time series, including OSU Leaf, Lighting-2,
Lighting-7, and Yoga. Further, Table III also shows that our
approach outperforms HMM hybrid meta-clustering ensem-
ble as its prototype by winning 13 out of 16 datasets, which
clearly justifies the effectiveness of the proposed bi-weighting
scheme.

3) Real-World Application Analysis: Fig. 7 shows the clus-
tering analysis of all moving trajectories in the CAVIAR
database achieved by our approach. It actually provides a good
potential for developing video content analysis algorithms
based on unsupervised learning. As seen, our approach divides
222 motion trajectories into ten groups, where trajectories with
similar motion behaviors are properly grouped within the same
cluster while dissimilar ones are separated into different clus-
ters. From the viewpoint of front camera, Fig. 7(i) illustrates
the group of trajectories that corresponds to the activity “pass
in front of cameras,” Fig. 7(a) and (d) illustrate groups of
trajectories having “walk and watch” movements at different
locations, and Fig. 7(c), (f), and (h) illustrate groups of trajec-
tories having the activities of “enter and exit the store” with
three motion paths. While the trajectories corresponding to
“wandering in the hall” are represented within a single clus-
ter as shown in Fig. 7(j), and trajectories corresponding to
“walk through the hall” with same direction are grouped into
a single cluster as shown in Fig. 7(e). Meanwhile, the tra-
jectories corresponding to “move horizontally” movements at
different locations are grouped into two clusters as shown in
Fig. 7(b) and (g).

In application of video surveillances, moving objects track-
ing is often interfered by external noises or obstacles, con-
sequently the collection of motion trajectories are always
corrupted via tracking algorithms. In order to evaluate the
robustness of our approach in such scenarios, we carry out
one more experiment of clustering-based classifications on
corrupted trajectories. In this simulation, the clean version
of trajectories are corrupted by: 1) adding different amounts
of Gaussian noise N(0, σ ) and 2) removing segments of
trajectories measured by a percentage of the trajectory length
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Fig. 7. Clustering analysis on CAVIAR database achieved by our approach.
(a) and (d) Activities of “walk and watch.” (b) and (g) “Move horizontally.”
(c), (f), and (h) “Enter and exit the store.” (e) “Walk through the hall.” (i)
“Pass in front of cameras.” (j) “Wandering in the hall.”

at random locations. The corrupted trajectories are then classi-
fied by clustering analysis of the clean version of trajectories as
illustrated in Fig. 7. As seen, the label of corrupted trajectory
is assigned by the cluster, whose corresponding HMM model
has the maximum log-likelihood to generate this corrupted tra-
jectory. Finally, the classification accuracies are obtained by
using the clustering label of clean version as the ground-truth.
Table IV shows the experimental results with different level
of corruptions. It can be seen that our approach still achieves
satisfactory classification accuracy (62.6%) for the worst cor-
rupted trajectories, which are created by adding Gaussian noise
N(0, 0.4) to, and removing 90% information from clean ver-
sion trajectories. While the last column and row of table report
the average classification accuracies with standard deviations
at a range of missing data and noise, respectively, these results
further demonstrate the robustness and effectiveness of our
approach in the real-world applications.

TABLE IV
TESTING RESULTS ON CORRUPTED TRAJECTORIES—CLASSIFICATION

ACCURACY (%)

V. DISCUSSION

Existing work on weighted clustering ensemble
algorithms [5], [57], [62], [63] can be generally catego-
rized into either cluster weighting or partition weighting.
A cluster weighting scheme [57], [62] associates the clusters
in a partition with a weighting vector and embeds it in a sub-
space spanned by adaptive combination of feature dimensions.
A partition weighting scheme [5], [58], [63] assigns a weight
vector to the partitions to be combined. In our approach,
we efficiently combine both partition weighting and cluster
weighting into a single bi-weighting scheme. Such weighting
scheme provides an optimal reconciliation among all input
partitions to produce a consolidated consensus partition. Our
proposed HMM-based meta-clustering ensemble model with
a bi-weighting scheme has been empirically and theoretically
justified for temporal data clustering.

From experimental analysis, experiment results show that
our approach always achieves the best performance in compar-
ison with similar algorithms. The results illustrated in Table II
indicate that our approach is much more robust to the model
initialization than existing HMM-based clustering algorithms.
Further, the extensive experiment results reported in Table III
also demonstrate that the proposed final refinement function
with model selection is superior in determining the number
of clusters automatically. Furthermore, the effectiveness and
practicability of our approach have also been demonstrated on
a real-world application as illustrated in Table IV and Fig. 7.

From theoretical analysis, the loss function L of clustering
ensemble derived in (4) suggests that the best reconciliation
of input partitions should be achieved by considering together
the importance of partitions and the corresponding clusters.
In order to quantify such importance in our ensemble model,
a bi-weighting scheme is developed from the two terms in (4).
According to the first term L1, a good partition manifests the
cluster structure with a small intracluster distance and a large
intercluster distance, which should make more contribution to
the consensus partition in order to minimize the value of L1.
However, such optimization can only produce the best parti-
tion selected as a consensus solution. In order to encourage
contributions from all input partitions for clustering ensemble,
L3 is defined by adding a regularization term into L1. By
minimizing L3, the weights of partitions are obtained in (7).
As long as the input partitions are given, the first term L1
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is often fixed, and the performance of a clustering ensemble
is controlled by the second term L2. It actually suggests that
a consensus partition should be close to all the clusters resulted
in the input partitions based on a weighted distance. Since the
weights of partitions are solved by optimizing L3, the weights
of clusters based on cluster size can be naturally defined in (8)
by minimizing the value of L2.

In addition, existing techniques on automatic identification
of cluster numbers often involve complicated procedures and
hence computing intensive. A representative example [64] can
be highlighted with three steps of operations.

1) Generate a set of partitions obtained by a clustering
algorithm with a range of cluster number initializations.

2) Map them into an adjacency matrix, and then itera-
tively apply a selected graph partitioning algorithm on
the adjacency matrix with decreased resolution in order
to produce a list of partitioning candidates.

3) Identify a long-life structure of the clusters out of all
such partition candidates and hence complete the deter-
mination of the cluster number. In contrast, our approach
can simplify such iterative decomposition of adjacency
matrix and graph partitioning by simply cutting the den-
drogram obtained from the consensus partition at a range
of threshold values, and these threshold values can be
easily determined corresponding to the longest range of
dissimilarity between successive merged clusters. In this
way, our proposed approach can reduce the computa-
tional complexity significantly without compromise on
the effectiveness of the clustering performances.

Future research can be considered to address the model
configuration of HMM due to the fact of that determination
of emission distribution and state number are always critical
issues for HMM-based approaches. Meanwhile, our proposed
ensemble approach provides a promising solution for both
initialization problem and model selection problem. The weak-
ness of our approach, however, is that it is time-consuming in
generating input partitions during initial clustering analysis,
which could be a problem for data mining of large datasets.
Therefore, it will be an interesting and challenge research topic
to reach a compromise between computational efficiency and
classification accuracy for ensemble techniques.

VI. CONCLUSION

In this paper, we have presented a novel HMM-based hybrid
meta-clustering ensemble approach with bi-weighting derived
from a formal analysis of the objective function of cluster-
ing ensemble. The extensive experiments on various temporal
datasets demonstrate that our approach achieves the promis-
ing performance for temporal data clustering analysis and
is suitable for applications in an unknown environment. In
the conclusion, four major advantages can be highlighted for
our proposed approach, which include: 1) the initialization
problem can be solved by adopting ensemble technique; 2) the
correct cluster number can be automatically determined on
the final partition via HMM-based agglomerative clustering
in association with DSPA; 3) A bi-weighting scheme is devel-
oped to obtain an improved clustering ensemble solution based
on optimal synergy between partitions and clusters; and 4) the

complex structure of clusters can be intrinsically captured by
a composite model in the final refinement.
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