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Field Effect Deep Networks for Image Recognition
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Image recognition with incomplete data is a well-known hard problem in computer vision and machine
learning. This article proposes a novel deep learning technique called Field Effect Bilinear Deep Networks
(FEBDN) for this problem. To address the difficulties of recognizing incomplete data, we design a novel
second-order deep architecture with the Field Effect Restricted Boltzmann Machine, which models the
reliability of the delivered information according to the availability of the features. Based on this new archi-
tecture, we propose a new three-stage learning procedure with field effect bilinear initialization, field effect
abstraction and estimation, and global fine-tuning with missing features adjustment. By integrating the
reliability of features into the new learning procedure, the proposed FEBDN can jointly determine the clas-
sification boundary and estimate the missing features. FEBDN has demonstrated impressive performance
on recognition and estimation tasks in various standard datasets.
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1. INTRODUCTION

Incomplete data, whose data values are partially observed [Liao et al. 2007], exists in a
wide range of fields, including social sciences, computer vision, biological systems, and
remote sensing [Williams et al. 2007; Li et al. 2015]. In general, features missing in
real-world data result from measurement noise, corruption, or occlusion [Chechik et al.
2008]. Everybody has experiences of incomplete data, such as noisy photos, old broken
posters, or ancient frescos. As we know, it is more difficult for computers to recognize
meaningful patterns from incomplete data than complete data [Wu et al. 2015; Ding
et al. 2015; Chen et al. 2015]. The interactive multimedia environment also requires
spatial consistency [Wu et al. 2009; Natarajan et al. 2015]. If the distortion is very
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Fig. 1. Some incomplete images due to the occlusion of some important facial feature regions. The forehead
is occluded in (a); the eyes are hidden behind sunglasses in (b) and (c); and the mouth is occluded in (d).

severe, even human beings cannot recognize these kinds of images correctly. Figure 1
provides some general cases of incomplete data in our daily lives. David Beckham is
one of the most iconic athletes, and most fans have no difficulty in recognizing him
from the four images in Figure 1. But it is not an easy task for many face recognition
algorithms because some key facial features to identify people are not observable, such
as the forehead, eyes, and mouth.

Current works on incomplete data can be roughly categorized into three classes
based on the approaches to model the missing values [Dick et al. 2008]. The first kind
of technique doesn’t intend to estimate the missing values. For example, Chechik et al.
[2006, 2008] proposed two methods to recognize the incomplete data directly without
any completion of the missing features using a Geometric Margin (GEOM) learning
framework [Chechik et al. 2006, 2008]. The second kind of technique fills the missing
values based on the available information and then learns the decision function in
a general way. Logistic Regression Classification based on Expectation Maximization
(LRCEM) estimates the conditional density function using a Gaussian mixture model
with expectation maximization [Williams et al. 2005]. Logistic Regression Classifi-
cation based on Variational Bayesian Expectation Maximization (LRCVBEM) utilizes
variational Bayesian expectation maximization to substitute expectation maximization
[Williams et al. 2007]. The third kind of technique seeks the final decision boundary
by estimating the missing value and constructing a predictive model jointly. Liao et al.
[2007] proposed a statistical model named the Quadratically Gated Mixture of Ex-
perts (QGME) for multiclass nonlinear recognition. Dick et al. [2008] derived a generic
joint optimization Weighted Infinite Imputation (WII) method, which learned the de-
cision function and the distribution of imputations dependently. These experiments
demonstrated significant performance improvements over the methods that separate
estimation from classifier learning. Hence, this article intends to design a classifier
to determine the decision boundary and estimate the missing values synchronously.
Besides these three types of approaches, some methods for missing value imputation
also can be extended for image recognition with incomplete data, such as the nonpara-
metric Bayesian dictionary learning method [Zhou et al. 2012], the hybrid prediction
model [Purwar et al. 2015], and self-organizing maps [Folguera et al. 2015].

Recently, there has been mounting neurophysiological evidence for considerable
attentional modulation, which can enlighten us on incomplete image recognition.
First, when an image is incomplete, humans can automatically adjust their attention
to the available features and emphasize the contributions from them consciously
and, actually, unconsciously. In comparison with the occluded part, the firing rates of
the neurons will increase by preferring the available features [Ranzato et al. 2011].
Second, additive attention could lead to the occluded parts of the object becoming
active, as the feedback from higher levels travels down the visual stream based on
the feedback connections in the visual cortex [Taylor et al. 2006]. This process allows
us to hallucinate occluded/undetected parts by filling in the missing features based
on top-down knowledge from the model, which plays an important role in identifying
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Fig. 2. The output characteristic curve and the operating mode of FET.

and completing objects when different portions are visible, or when parts are occluded
or degraded [Aleman et al. 2003]. It means that humans can infer and estimate
the incomplete parts by the reference data. In case the feature value is missing
and no related information is useful to estimate this missing feature, humans will
automatically neglect the specific missing feature.

Based on existing studies from both computer science and neurophysiology, to solve
the problem of image recognition with incomplete data, we should answer three linked
questions: (1) How do we represent the differences between the available features and
missing features? (2) How do we use visible information to infer and estimate the
occluded or degraded parts? (3) How do we unify incomplete image recognition and
missing features estimation into a framework?

To address the first question, we construct the reliability function to model the quality
of the features by reference to the characteristics of a Field Effect Transistor (FET).
As a common electronic device, the FET has three possible operating modes, including
the cutoff mode, the ohmic mode, and the saturation mode, as shown in Figure 2. As
we described before, when the feature value is missing and no related information is
available, humans will neglect the specific missing feature. In our model, the reliability
function will go into the cutoff mode and the reliability of this missing feature is
set to be zero. If some available information can be used to estimate the missing
feature, humans will begin to estimate the missing feature and adjust the reliability.
In our model, it is identical to the ohmic mode of the FET. In this mode, the missing
features will be estimated in the process of the recognition while the reliability of the
corresponding connection is updating. Given that the estimate is stable and no further
information is available, humans will stop adjusting the estimation and the reliability
will remain unchanged. In our model, it corresponds to the saturation mode of the
FET. For the second question, we design a learning procedure based on deep learning
techniques. Many experiments have demonstrated that deep learning techniques have
the distinguishing ability of information abstraction in various real-world visual data
analysis tasks [Schmidhuber 2014]. Deep learning methods also showed great potential
to address the incomplete data recognition problem [Zhong et al. 2011]. For the third
question, we integrate the features with their reliabilities into the three learning stages
of the proposed model.

To conclude, in this article, we propose a deep learning model called Field Effect
Bilinear Deep Networks (FEBDN) for image recognition with incomplete data. In-
spired by the attentional modulation, we attempt to construct the reliability function
to model the quality of features in reference to the characters of the FET. By integrating
the features with their reliabilities into the three-stage learning of FEBDN, FEBDN
constructs the optimal classification boundary and estimates the missing features syn-
chronously. The remainder of this article is organized as follows. Related work on deep
learning is reviewed in Section 2. A novel deep architecture with a new deep learning
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algorithm is introduced in Section 3. Section 4 shows the performance of the proposed
techniques in different tasks. Section 5 concludes this article and outlines our future
work.

2. RELATED WORK ON DEEP LEARNING

Empirical validations in various real-world applications have shown that deep learning
models perform impressively for applications in pattern recognition and machine learn-
ing [Atrey et al. 2010; LeCun et al. 2015], such as in image classification [Krizhevsky
et al. 2012], image sentiment analysis [You et al. 2015], automatic localization in ul-
trasound [Chen et al. 2015], and document summarization [Zhong et al. 2015]. To the
image classification task, in our previous work, we constructed a novel deep architec-
ture of Bilinear Deep Belief Networks (BDBN) to preserve the natural tensor structure
in information propagation [Zhong et al. 2011]. Based on the novel deep structure,
the three-stage learning of BDBN was designed by referring to the procedure of object
recognition of human beings, especially the “initial guess” part.

Although there are few deep learning techniques on incomplete data classification
in the view of vision, some previous works can be applied in incomplete image classi-
fication and missing features estimation [Salakhutdinov et al. 2007; Sohn et al. 2013;
Lee et al. 2011]. Imputing RBM was introduced to estimate the missing users’ ratings
of movies [Salakhutdinov et al. 2007]. Imputing RBM first initializes the missing fea-
ture as the mean value of the available features in the corresponding location. Then
it computes the gradient of the log-probability of the data with respect to the missing
features and updates their values. Conditional RBM can also be applied for incomplete
data classification [Salakhutdinov et al. 2007]. It defines a binary vector to indicate
whether the feature is missing and constructs a matrix that models the effect of the
binary vector on features in the hidden layer. The learned matrix can increase the con-
tribution of the available features. Point-wise Gated Boltzmann Machines (PGBM) was
proposed to focus on separating the relevant patterns from irrelevant patterns [Sohn
et al. 2013]. The switch units allow the model to estimate where the task-relevant
patterns occur and make only those visible units contribute to the final prediction.
Based on the switch design of PGBM, it also can be applied in the incomplete data
classification. Convolutional Deep Belief Networks (CDBN) proposed a hierarchical
(bottom-up and top-down) generative model for learning hierarchical representations
from images [Lee et al. 2011]. With full Gibbs sampling, the bottom-up inputs combined
with the context provided by the higher layer significantly improve the second-layer
representation and can be utilized to infer the missing features in the input layer.
sDBN, proposed by Tang et al. [2010], can be applied in incomplete image classifica-
tion. They introduced a modified version of the DBN termed a sparse DBN. They also
developed a probabilistic algorithm to denoise the noisy features.

3. FIELD EFFECT BILINEAR DEEP NETWORKS

In this section, we propose the FEBDN to model the reliability of the features and
recognize the incomplete images. Section 3.1 presents the novel deep architecture of
FEBDN. A three-stage learning procedure is presented in the following part. We also
provide the algorithm and discuss the relations between FEBDN and some represen-
tative deep models in this section.

3.1. Framework of Field Effect Bilinear Deep Networks

Let X be a set of incomplete data samples as shown here:

X = [X1, X2, . . . , Xk, . . . , XK], (1)
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Fig. 3. Architecture of FEBDN. The small blue dots represent nodes in each respective layer.

where Xk ∈ R
I×J is a sample datum with missing features and K is the number of

sample data. Let Fk denote the set of missing features of the sample Xk; (Xk)i j is
missing if (Xk)i j ∈ Fk. Let Y be a set of labels corresponding to X:

Y = [y1, y2, . . . , yk, . . . , yK], (2)

and yk is the label vector of Xk in R
C , where C is the number of classes, yk =

[y1
k , y2

k , . . . , yc
k, . . . , yC

k ]:

yc
k =

{
1 if Xk ∈ cth class
0 if Xk /∈ cth class

. (3)

Based on the given training set, the goal in image recognition is to learn a mapping
function from the image set X to the label set Y and then recognize the new data
points according to the learned mapping function. To address the problem of incomplete
image recognition, we propose a novel deep architecture as shown in Figure 3. A fully
interconnected directed network includes the input layer H1, hidden layer H2, . . . , HN,
and one label layer La at the top. In our model, the input layer and all hidden layers
are constructed by a set of second-order planes, which are consistent with the natural
tensor structure of images. The input layer H1 has I × J units, and the size is equal to
the dimension of the input features. We use the pixel values of sample datum Xk as the
input features. In the top, the label layer has C units, which is equal to the number of
classes. The search of the mapping function from X to Y is transformed to the problem
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of finding the optimum parameter space θ∗. A set of new Field Effect RBM (FRBM) is
proposed to connect the adjacent layers.

Furthermore, FRBM is utilized as the basic units of FEBDN instead of RBM. In
DBN, RBM is used to abstract the embedding information by layer-wise reconstruction.
Unfortunately, RBM cannot directly work when some features are missing and the
corresponding units of the networks are empty. Inspired by common electronic circuits
[Malik 1995], FRBM constructs the reliability-weighted connection by FET analogy
between the current layer and the next layer. The reliability parameter curve of FRBM
is designed to simulate the output characteristic curve and the operating mode of
FET in Figure 2. In our model, the probability level of the estimates of the missing
feature corresponds to the gate-to-source voltage of the FET. The similarity between
the reference datum and incomplete datum corresponds to the drain-to-source voltage
of the FET.

3.2. Initial Guess by Field Effect Bilinear Initialization

In this part, we introduce the Field Effect Bilinear Projection (FBP), which is utilized to
extract the discriminant information from the image datasets with incomplete features.
Given the training data points X1, X2, . . . , XK ∈ R

I×J with the missing features set F1,
F2, . . . , FK, where (Xk)i j is missing if (Xk)i j ∈ Fk, FBP aims to find two projection matrices
U ∈ R

I×P and V ∈ R
J×Q such that the latent representation TX1, TX2, . . . , TXK ∈ R

I×J

can be obtained by TXk = UT XkV (k = 1, . . . , K) from features with high reliability.
Here, we define the reliability matrix RF

k ∈ R
I×J of the features in Xk. In the initial

guess stage, the reliability matrix RF
k is assigned as Equation (4), just as the cutoff

mode of FET:

(RF
k )i j =

{
0, if (Xk)i j ∈ Fk

1, else
. (4)

In order to preserve the discriminant information from features with high reliability
in the learning procedure, the objective function of FBP could be represented as follows:

arg max
U,V

J(U, V) =
K∑

s,t=1

(αBst − (1 − α)Wst)||UT (Xs. ∗ RF
st − Xt. ∗ RF

st)V||2

s.t. RF
st = RF

s . ∗ RF
t , UT U = IP, VT V = IQ.

(5)

In Equation (5), α ∈ [0, 1] is the parameter used to balance the between-class weights
Bst and the within-class weights Wst, which are defined as follows:

Bst =
{

1
nd

− 1
nc

, if yc
s = yc

t = 1,

1
nd

, else,
, Wst =

{ 1
nc

, if yc
s = yc

t = 1,

0, else,
, (6)

where nd is the number of data points in all classes and nc is the number of data
points in class c, where c ∈ {1, . . . , C}. Different from Bilinear Discriminant Projec-
tion (BDP), which tries to preserve the discriminant information from all features
[Zhong et al. 2011], we extract the discriminant information based on the features
with high reliability. By simultaneously maximizing the distances between data points
from different classes and minimizing the distance between data points from the same
class, the discriminant information is preserved at the greatest extent in the pro-
jected feature space. Optimizing J(U, V) by solving U (or V) with fixed V (or U) is
a convex optimization problem. Let Est = αBst − (1 − α)Wst, with the fixed V. The
optimal U is composed of the first P eigenvectors of the following eigendecomposition
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problem:
DVu = λu, (7)

where DV = ∑
st Est(Xs. ∗ RF

st − Xt. ∗ RF
st)VVT (Xs. ∗ RF

st − Xt. ∗ RF
st)

T .
Similarly, with the fixed U, the optimal V is composed of the first Q eigenvectors of

the following eigendecomposition problem:

DUv = λv, (8)

where DU = ∑
st Est(Xs. ∗ RF

st − Xt. ∗ RF
st)

T UUT (Xs. ∗ RF
st − Xt. ∗ RF

st).
Therefore, we can alternately optimize U (with a fixed V) and V (with a fixed U). The

previously listed steps monotonically increase J(U, V), and since the function is upper
bounded, it will converge to a critical point with transformation matrices U and V.

In FBP, the sizes of P and Q are determined by the number of positive eigenvalues in
DV and DU, respectively, since adding the eigenvectors corresponding to the nonpositive
eigenvalues will not increase the values, as shown in Equation (5). As a result, the
original dimension I × J is automatically reduced to P × Q.

3.3. Bidirectional Inference by Field Effect RBMs

In the human visual cortex, bidirectional inference includes bottom-up inference and
top-down inference, and they are not separate processes. Thus, in our scheme, bottom-
up inference and top-down inference are integrated together. The whole deep learning
model with the parameter space is constructed based on the bottom-up inference from
available features and estimated features. Simultaneously, the estimates of the missing
features with their reliability parameters are obtained by the top-down inference.

The available features and the estimated features are input to the deep architecture
as the state of the input layer H1 to construct an FRBM with the first hidden layer
H2. The energy function of the state (h1, h2) in the first Field Effect RBM is shown in
Equation (9). Here, if the feature is available, the corresponding h1

i j is the value of the
available feature; if the feature is missing, the corresponding h1

i j is the estimate of the
feature:

E(h1, h2; θ1) = −
i≤I, j≤J∑
i=1, j=1

p≤P2,q≤Q2∑
p=1,q=1

h1
i j A1

i j,pq RA,1
i j,pqh2

pq−
i≤I, j≤J∑
i=1, j=1

b1
i j R

b,1
i j h1

i j −
p≤P2,q≤Q2∑

p=1,q=1

c1
pqh2

pq,

(9)
In Equation (9), I × J is the number of units in H1, while P2 and Q2 are the

dimensions in hidden layer H2. θ1 = (A1,b1,c1) is the parameter space between the
input layer H1 and the first hidden layer H2. A1

i j,pq is the symmetric interaction term
between the input unit (i, j) in H1 and the hidden unit (p, q) in H2. b1

i j is the (i, j)th bias
of layer H1 and c1

pq is the (p, q)th bias of layer H2. Rθ,1 = (RA,1,Rb,1) is the reliability
parameter between the input layer H1 and the first layer H2 to control the reliability
of the corresponding θ1. Specifically, RA,1

i j,pq and Rb,1
i j are used to represent the reliability

of corresponding parameters (θ )i j related to (Xk)i j . To simplify the problem, reliability
parameters Rθ,1

i j = (RA,1
i j,pq,R

b,1
i j ) depend on the reliability of the estimates of missing

feature (Xk)i j ∈ Fk:

RA,1
i j,pq = RA,1

i j,• = Rb,1
i j = �θ,1

i j (10)

Therefore, the first RBM has the following joint distribution:

P(h1, h2; θ1) = exp−E(h1, h2;θ1)∑
h1

∑
h2 exp−E(h1, h2;θ1)

, (11)
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The log probability of the model assigned to h1 in H1 is

log P(h1) = log
∑
h2

exp−E(h1, h2;θ1) − log
∑
h1

∑
h2

exp−E(h1, h2;θ1), (12)

Similar to existing deep learning methods, we utilize the stochastic steepest ascent in
the log probability of the training data to update the parameter space θ1 = (A1, b1, c1):

A1
i j,pq = ϑ A1

i j,pq + �A1
i j,pq RA,1

i j,pq (13)

�A1
i j,pq = εA(<h1

i j(0)h2
pq(0)>data − <h1

i j(1)h2
pq(1)>recon), (14)

where 〈·〉data denotes an expectation with respect to the data distribution and 〈·〉recon
denotes the “reconstruction” distribution of data after one step. Other parameters in
the θ1 update function can be calculated in a similar manner:

b1
i j = ϑb1

i j + �b1
i j R

b,1
i j = ϑb1

i j + εb(h1
i j(0) − h1

i j(1))Rb,1
i j (15)

c1
pq = ϑc1

pq + �c1
pq = ϑc1

pq + εc(h2
pq(0) − h2

pq(1)), (16)

where ϑ is the momentum and εA, εb, and εc are the learning rates of model parameters
A, b, and c.

As we described before, we find a Field Effect Bilinear Projection based on the reliable
features that can automatically reduce the original dimension I×J to P×Q through the
transformation matrices U1 and V1. As a result, in our model, the number of neurons
in layer H2 is determined by the row and column size of the transformation matrices
U1and V1:

P2 = row(U1), Q2 = column(V1). (17)
We set the discriminative transformation parameters obtained from the Field Effect

Bilinear Projection as the initial symmetrical connection weights by Equation (18):

A1
i j,pq(0) = (U1

ip)T V1
jq. (18)

The previous discussion is the construction of the first Field Effect RBM. Similar
operations can be extended to deeper networks to construct the whole initial parameter
space of the deep learning model in a straightforward way.

The estimate of the missing feature is obtained by the top-down inference. For the
incomplete sample datum Xs(1 ≤ s ≤ K), we define ( fs)n

pq to denote the corresponding
activation code in the hidden unit (p, q) of the layer n(1 ≤ n ≤ N). The activation
code ( fs)n

pq is obtained by Equation (19), where σ (x) is the sigmoid function σ (x) =
1/[1 + exp(−x)], which also follows the activity of biological neurons:

( fs)n
pq = σ (hn−1

i j An−1
i j,pq RA,n−1

i j,pq + cn−1
pq ), n ≥ 2. (19)

The Euclidean distances sequence {gn
s,t} between the activation code of data points

Xs and Xt in layer n is denoted as follows:

{gn
s,t} = ∥∥( fs)n

pq − ( ft)n
pq

∥∥ , 1 ≤ s, t ≤ K, s 
= t. (20)

To the current data point Xs, we sort the distance sequence {gn
s,t} in ascending order.

The ranking position of the data point Xt in the sorted list is denoted as Ln
s,t. To infer

and estimate the missing features (Xs)i j in Xs, the nearest datum point Xt∗ is selected
out as the reference datum by Equation (21):

t∗ = arg min
t

[∑
n

εnLn
s,t

]
, s.t. (Xs)i j ∈ Fs, (Xt)i j /∈ Ft, ys = yt, (21)
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Fig. 4. Estimation of the missing features based on the node’s reliability by top-down inference. The
black/white dots represent available/missing features in the current layer. The blue dots represent reference
features.

where εn is the weight of the activation codes in layer n. The higher-layer activation of
the reference datum is utilized to infer and estimate the missing features of incomplete
data just like Equation (22):

(Xs)i j = σ [A1
i j,pq( ft∗ )2

pq RA,1
i j,pq + b1

i j], s.t.(Xs)i j ∈ Fs. (22)

This process is demonstrated in Figure 4.
To the missing features (Xs)i j , the average ranking distance of the reference datum

is defined as (ms)i j :

(ms)i j =
N∑
n

εnLn
s,t∗/N. (23)

Based on the distribution of all available features in the same category, the proba-
bility level of the estimated feature (Xs)i j is defined as (zs)i j in Equation (24):

(zs)i j =
∫ ∞

(μ)i j+‖(Xs)i j−(μ)i j‖
2√

2π (λ)i j
exp

− [y−(μ)i j ]2

2(λ)2i j dy, (μ)i j = 1∑
t t

∑
t

(Xt)i j,

(λ)i j =
√

1∑
t t

∑
t [(Xt)i j − (μ)i j]2, s.t.(Xs)i j ∈ Fs, (Xt)i j /∈ Ft, ys = yt

, (24)

where (μ)i j and (λ)i j are the mean value and the standard deviation of all available
features (Xt)i j /∈ F(1 ≤ t ≤ K).

As we know, the gate-to-source voltage and the drain-to-source voltage are two de-
ciding factors of the output characteristic curve and the operating mode of FET. In our
model, we use the probability level of the estimated feature to correspond to the gate-
to-source voltage. The similarity between the reference datum and incomplete datum
corresponds to the drain-to-source voltage. The sigmoid curve is selected to construct
the reliability function. The reliability parameter �θ,1

i j is determined by the probability
level of the estimated feature (zs)i j and the average ranking distance of the reference
datum (ms)i j as in Equation (25):

�θ,1
i j = 2(zs)i j

1 + exp(−S/(ms)i j)
− (zs)i j, (25)

where S is the parameter to control the shape of the curve.
The maximum value of �θ,1

i j is determined by (zs)i j , which is consistent with the role
of the gate-to-source voltage in FET. With a fixed (zs)i j , �θ,1

i j tends to (zs)i j when (ms)i j

approaches zero, and �θ,1
i j tends to zero when (ms)i j approaches infinity. Hence, (ms)i j is
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the inverse of the drain-to-source voltage. If the estimate of the missing feature is near
to the expectation of the distribution of the available features from the same category,
(zs)i j approaches 1, which means this estimate is reasonable. If the activation codes
of the reference datum are close to those of the current data, (ms)i j approaches zero,
which means this reference datum is reliable to do the estimation. When both of the
requirements are satisfied, the reliability parameter �θ,1

i j will get a high value.

3.4. Postactivation by Global Fine-Tuning

Earlier, we used the bidirectional inference algorithm by Field Effect RBM to construct
a deep model. In this part, we use backpropagation through the whole deep model to
fine-tune the parameters θ = [A,b,c] for optimal recognition and estimation. Unlike
the usage of backpropagation in DBN, in our fine-tuning stage, the missing features in
incomplete data are slightly re-estimated.

In the layer-by-layer bidirectional inference stage, a search has been performed for
a sensible and good region in the whole parameter space. Therefore, before proceeding
to fine-tuning, we have already constructed a good data concept extraction model, and
most of the missing features are roughly inferred and estimated. Now, backpropagation
is utilized to tune the entire parameter space of FEBDN. Two tasks are involved in the
stage of fine-tuning: finding good local optimum parameters θ∗ = [A∗,b∗,c∗] to recognize
the data effectively and adjusting the estimates of missing features elaborately.

To the first task, the learning algorithm is used to minimize the cross-entropy error
[−∑

s ys log
∧
ys], where ys and

∧
ys are the correct label and the output label value of

sample datum Xs, respectively.
Simultaneously, to the second task, the rough estimates of the missing features are

slightly adjusted and updated by Equation (26) and Equation (27). Let OFs denote the
set of output estimates of the missing features in sample datum Xs:

t∗ = arg min
t

[∑
n

εnLn
s,t

]
, s.t.(Xs)i j ∈ Fs, (Xt)i j /∈ Ft, ys = yt (26)

(Xs)i j = σ [A1
i j,pq( ft∗ )1

pq + b1
i j], s.t.(Xs)i j ∈ OFs. (27)

For the test data, similar activation codes in the higher layer of the same predicted
category are utilized to infer and estimate the value of the missing features. Equa-
tion (26) is substituted by the following equation:

t∗ = arg min
t

[∑
n

εnLn
s,t

]
, s.t.(Xs)i j ∈ Fs, (Xt)i j /∈ Ft,

∧
yc

s =
∧
yc

t = 1. (28)

3.5. Field Effect Bilinear Deep Networks Algorithm

The detailed procedure of FEBDN is described in Algorithm 1. Lines 2 to 17 consist of
the stage of initial guess by field effect bilinear initialization. Lines 18 to 22 compose
bidirectional inference. Lines 24 to 25 are the postactivation by global fine-tuning.

3.6. Discussion

In this part, we show the generalization of FEBDN by analyzing its relation with our
previous work, BDBN [Zhong et al. 2011] and SBDBN [Zhong et al. 2012], and some
representative existing works, including Imputing RBM [Salakhutdinov et al. 2007],
sDBN [Tang et al. 2010], and PGBM [Sohn et al. 2013].

1) Relation with BDBN
In Section 2, we introduce our previous work, Bilinear Deep Belief Networks (BDBN).

Unlike FEBDN, in all three learning stages, BDBN equally relies on all the features
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regardless of whether the features are missing. It can be viewed as one special version
of FEBDN that only includes the saturation mode. And the reliability is “frozen” to be 1.

2) Relation with SBDBN
SBDBN is another special version of FEBDN, which is the opposite extreme of BDBN.

Different from FEBDN, SBDBN does not adaptively adjust the reliability of the es-
timates for missing features. SBDBN only relies on fully exploiting the embedding
information according to the available features rather than any completion of missing
features. That is, there are only two modes in SBDBN: the cutoff mode and the satu-
ration mode. For the available features, the reliability connections are set to be 1, and
the reliability connections of the missing features are set to be 0.

3) Relation with PGBM
The PGBM algorithm focuses on separating the relevant patterns from irrelevant

patterns. For the incomplete data classification task, the missing features can be con-
sidered as the irrelevant features. In this case, the switch units allow the model to make
only those available units to contribute to the final prediction. It can be viewed as one
special version of FEBDN, just as SBDBN, which only relies on fully exploiting the
embedding information according to the available features rather than any completion
of the missing features.

4) Relation with Imputing RBM
The idea of Imputing RBM is similar to FEBDN: treating the missing features as a

set of variables and learning the values in the learning scheme. It utilizes the mean
values of the available features as the initial values of the missing features; the whole
parameter space will be constructed and updated based on the available features and
the estimates of missing features regardless of whether the initial values are reliable.
This setting will make the initial values dominate in the classification and estima-
tion stage, which may impair the performance. In Section 4, we will demonstrate the
performance of the FEBDN with Imputing RBM.

5) Relation with sDBN
From the comparisons of structures, both sDBN and FEBDN can be regarded as

modified versions of DBN. In sDBN, the first layer is sparsely connected as the receptive
field (RF). With these local connections, the model is more robust to noise or occlusion.
sDBN uses the log probability to estimate which nodes should be unclamped. That
is, sDBN could automatically identify the occluded regions in incomplete images. For
feature estimation, sDBN presented a denoising algorithm that combines top-down
and bottom-up inputs to “fill in” the missing features. In this process, a threshold is
introduced to distinguish which nodes to unclamp, and only those available features
are used to construct the recognition model. Different from sDBN, in bidirectional
inference of FEBDN, all features with their corresponding reliabilities are involved in
constructing the decision boundary and estimating the missing features. In Section 4,
we will compare the recognition performance of the proposed FEBDN with sDBN.

4. EXPERIMENTS AND RESULTS

In this section, we demonstrate the performance of the proposed FEBDN on three
standard datasets and a new dataset collected and constructed by our group. The first
dataset is MNIST, a standard large database of handwritten digits, which is often
used to illustrate the performance of deep models, and its subset has been used for
performance comparison of incomplete data classification algorithms [LeCun et al.
1998]. The second dataset is CIFAR-10 [Krizhevsky and Hinton 2007], which is a
standard large database of real-world natural images. The third standard dataset is the
BioID face dataset, which is often used to illustrate the performance of face recognition
[Jesorsky et al. 2001]. As we know, the more general case of incomplete data in our
daily lives is that some key features in the data are not observable. Therefore, our
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group tried to collect the fourth dataset, StarFace, with some incomplete face images
due to occlusion of important facial feature regions.

For the common parameters of the deep learning techniques, we follow the classical
setting of the standard Matlab toolbox for DBN [Hinton et al. 2006]. For example,
the balance weight α is set as 0.5. And we used 50 iterations for pretraining and
200 iterations for fine-tuning with backpropagation. For other parameters in existing
works, we follow their general settings in their papers. For example, the size receptive
field is set as 7×7. In FEBDN, the weight εn in layer n is set as 1. For parameter S,
FEBDN achieves better performance when it ranges from 5 to 10. For simplicity, we
set it as 10 in our experiments. The classical setting for the size of the nodes in the
first, the second, and the third hidden layer is 500, 500, and 2,000, respectively [Hinton
et al. 2006].

We compare the performance of FEBDN with various state-of-the-art incomplete
image recognition algorithms and representative deep learning models, including k-
nearest neighbor estimation (k-NNE), SVM [Boser et al. 1992], LRCEM [Williams et al.
2005], GEOM [Chechik et al. 2008], QGME [Liao et al. 2007], WII [Dick et al. 2008],
BDBN [Zhong et al. 2011], DBN [Hinton et al. 2006], Imputing RBM [Salakhutdinov
et al. 2007], Conditional RBM [Salakhutdinov et al. 2007], PQBM [Sohn et al. 2013],
CDBN [Lee et al. 2011], sDBN [Tang et al. 2010], SBDBN [Zhong et al. 2012], CNN
[LeCun et al. 1998], and Field Effect Deep Neural Network (FEDNN). In k-NNE, the
missing features were set with the mean value obtained from the nearest neighbors’
instances. Neighborhood was measured using a Euclidean distance in the subspace
relevant to each pair of samples. The number of neighbors was varied across one,
three, five, 10, 15, and 20, and the best result is provided to make a comparison. In
LRCEM, a Gaussian mixture model is learned by iterating between (1) learning a
GMM model of the filled data and (2) refilling missing values using cluster means.
In FEDNN, we combine the FET with a typical deep neural network to test whether
FET can be combined with other deep learning methods to help recognize incomplete
images.

4.1. Experiment on Handwritten Dataset MNIST

In this part, we explore the performance of FEBDN under a supervised learning scheme
when features are missing at random. The first experiment in this dataset is used to
demonstrate the effectiveness of FEBDN for recognition on incomplete images with a
fixed missing ratio. In the second experiment, we demonstrate the incomplete image
recognition when features are missing at random under different missing ratios. We
test on the image dataset of handwritten digits, MNIST [LeCun et al. 1998]. MNIST is
a standard database of handwritten digits containing 70,000 images with 10 classes.
MNIST is widely used to compare deep learning performance [Salakhutdinov and
Hinton 2007; Weston et al. 2008].

The first experiment on this dataset is used to demonstrate the effectiveness of
FEBDN for recognition on incomplete images with a fixed missing ratio. We follow the
same experimental setting of Chechik et al. [2008]: 1,200 images including 600 images
of the digit 5 and 600 images of digit 6 are randomly selected from MNIST. These
images are partitioned to 1,000 training data and 200 test data. We removed a square
patch of pixels from each image that covered 25% of the total number of pixels. The
location of the patch was uniformly sampled for each image.

We perform five random splits and report the average results over five trials. The
recognition performance of FEBDN with other incomplete image recognition algo-
rithms is shown in Table I. “Zero” means that the missing values were set to be 0.
“Mean” means that the missing values were set as the average value of the features
over all available data. From Table I, it can be observed that, compared with other
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Table I. Average Recognition Accuracies (%) on Block Incomplete Digits 5 and 6 of MNIST

Model Acc.
Proposed Model FEBDN 99

Other Deep Model
Bilinear Deep Model

SBDBN 98.5
BDBN (Zero) 97

BDBN (Mean) 97.5

Classical Deep Model
DBN (Zero) 96
DBN (Mean) 96.5

Representative Model for Incomplete Data

Without Estimation GEOM 95

With Estimation

SVM (Zero) 95
SVM (Mean) 95

k-NNE 94
LRCEM 95

Joint Optimization
QGME 96.5

WII 96

Fig. 5. Samples of estimated images by FEBDN of the block missing features with fixed missing ratio.

state-of-the-art incomplete image recognition algorithms, deep learning models achieve
better performance. This proves that the deep learning models have better recognition
ability on incomplete data. Compared with two special versions of FEBDN, by fully ex-
ploiting the embedding information according to the available features, the recognition
ability of SBDBN is better than BDBN. Relying on the field effect bilinear initialization
and Field Effect RBMs, FEBDN obtains the best accuracy rate in all deep models. In
Figure 5, some samples of the block incomplete images and the corresponding esti-
mated images are demonstrated. Although some occluded blocks were located in the
important parts in which digits 5 and 6 are similar, the estimated images obtained by
FEBDN are correct.

In the second experiment, we demonstrate the incomplete image recognition when
features are missing at random under different missing ratios: 60,000 images of 10
classes from MNIST are utilized as training data; the remaining 10,000 images are
utilized for test. In this experiment, five random missing trials are performed and the
average results over the five trials are reported. Some sample images with different
missing ratios are shown in Figure 6. Although the image samples selected in Figure 6
are not difficult to recognize, when the missing ratio becomes higher, even humans
cannot easily recognize these digits. Table II shows the performance comparison under
different missing ratios. Obviously, FEBDN shows a higher incomplete recognition
accuracy rate. Although recognition is adequately hard for a human when 80% of the
features are missing, our algorithms demonstrate acceptable performance. In deep
learning algorithms, the performance of CDBN+SVM is worse than others. Although
CDBN can be utilized to estimate some missing features based on the shared weights in
symmetrical parts, it is not proposed for the incomplete image classification. Thus, the
random noise will have a bad influence on probabilistic max-pooling and higher-layer
representations.
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Fig. 6. Examples for different percentages of missing random pixels.

Table II. Average Recognition Accuracies (%) on Digits with Different Missing Ratio of MNIST
��������Ratio

Alg. Conditional Imputing
FEBDN SBDBN DBN(Zero) DBN(Mean) RBM RBM

20% 98.92 97.45 96.99 96.8 92.82 97.42
40% 98.34 96.74 96.12 96.25 91.38 96.13
60% 95.86 94.4 92.78 94.23 88.2 92.96
80% 84.98 84.81 82.6 82.01 78.91 81.28��������Ratio

Alg.
PGBM CDBN+SVM CNN(Zero) CNN(Mean) SVM(Zero) SVM(Mean)

20% 97.42 84.46 96.86 96.88 87.84 87.25
40% 96.75 82.34 96.28 95.94 84.5 86.72
60% 94.37 80.03 94.52 93.53 80.96 82.7
80% 84.84 77.29 84.57 84.51 67.47 79.69

Additionally, to evaluate whether FEBDN has the ability to estimate the missing fea-
tures, we compare our algorithm with the baseline estimation algorithm k-NNE and
two other deep estimation algorithms: Imputing RBM and CDBN. In k-NNE, the num-
ber of neighbors was varied across one, three, five, 10, 15, and 20, and the result images
with the shortest Euclidean distance were selected. Some samples are demonstrated
in Figure 7. From Figure 7, we found that some handwritten digits are incorrectly esti-
mated by k-NNE, Imputing RBM, and CDBN. For example, in Figure 7(g), by k-NNE,
Imputing RBM, and CDBN, digit 4 is estimated just as digit 9. Although the distance
between the ground-truth images and estimated images by both of the algorithms is
not too far in Figure 7(h), the estimated images by k-NNE, Imputing RBM, and CDBN
do not have enough discriminant information. In k-NNE and Imputing RBM, the es-
timates are based on the similarity of pixel-level features in the input layer and first
hidden layer, respectively. In CDBN, the estimates rely on the shared weights from
available features. But in FEBDN, the Field Effect RBMs help us to infer the missing
features with better discriminant ability. This strategy helps our FEBDN achieve a
better and effective estimate for the incomplete images.

4.2. Experiment on CIFAR-10

In this subsection, we further investigate the effect of FEBDN and other algorithms for
image recognition on real-world natural images with missing features. The CIFAR-10
dataset [Krizhevsky and Hinton 2009] consists of 60,000 images with the a resolution
of 32×32 from 10 classes (6,000 images per class), including 50,000 training images
and 10,000 test images. This dataset includes 10 common categories, namely, “air-
plane,” “automobile,” “bird,” “cat,” “deer,” “dog,” “frog,” “horse,” “ship,” and “truck.” In
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Fig. 7. Samples of estimated images compared with 40% randomly missing ratio.
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Table III. Average Recognition Accuracies (%) on CIFAR-10 with 20% Missing Ratio
��������Ratio

Alg. Imputing DBN DBN SVM SVM
FEBDN sDBN FEDNN RBM PGBM (Zero) (Mean) (Zero) (Mean)

20% 35.53 34.91 35.21 32.87 33.41 31.60 33.23 28.38 29.27

Fig. 8. Sample images with missing important facial parts.

this experiment, we demonstrate the incomplete image recognition while the missing
ratio of pixels is 20%. The gray values of the images are used as features. We perform
five random splits and report the average results over five trials. The recognition ac-
curacies on CIFAR-10 of FEBDN, sDBN, FEDNN, Imputing RBM, PGBM, DBN(Zero),
DBN(Mean), SVM(Zero), and SVM(Mean) are shown in Table III. As we know, sDBN
has the ability to identify the occluded regions in incomplete images before estimation.
If this process is inaccurate, then it will have a direct effect on the accuracy. To ensure
fair comparison among all these methods, the occluded regions are also marked in a
preprocessing phase for sDBN. From Table III, it can be observed that FEBDN achieves
a higher incomplete recognition accuracy rate, even compared with sDBN, Imputing
RBM, and PGBM. The performance of FEDNN is better than sDBN. It evidences the
idea that FET can be effectively combined with other methods to help recognize images
with missing values.

4.3. Experiment on Face Image Dataset BioID

In this part, we explore the performance of FEBDN for face recognition on the dataset
of BioID [Jesorsky et al. 2001]. The first experiment in this dataset is used to demon-
strate the face recognition effectiveness of FEBDN when important facial features are
missing. In the second experiment of this dataset, we verify the auto-encode ability of
proposed FEBDN based on the incomplete similarity.

The BioID face dataset consists of 1,521 face images collected containing 23 subjects.
The number of images in every category of BioID is varied, from 35 to 118. In our
experiments, first, we select the categories with more than 50 face images as the
subset that we work on. This subset includes 1,208 images in 14 categories. Then,
just like the procedure on face datasets, the complete images are normalized (in scale
and orientation) so that the two eyes are aligned at the same position. Finally, the
facial areas are cropped and downsampled into the final images. The size of each final
image in all of the experiments is 32×32 pixels, with 256 gray levels per pixel. The
experiment in this dataset is used to demonstrate the face recognition effectiveness of
FEBDN when important facial features are missing. In the preprocessing stage of every
image, we removed a rectangle region of pixels automatically according to the pregiven
coordinates of important facial features and generated five kinds of incomplete images.
The locations of missing regions include the forehead, eyes, nose, mouth, and chin.
Figure 8 demonstrates some sample images in this experiment.
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Fig. 9. Average recognition accuracy rates on test data in BioID with different numbers of labeled data.

Fig. 10. The reliability update process with corresponding estimated images: (a) the estimated mouth and
(b) the estimated eyes part.

In these experiments, deep learning models demonstrated better performance than
other existing recognition models. In these experiments, we first compare the proposed
FEBDN with other deep learning models under a semisupervised learning scheme.
For this dataset, 250 images for each person with different missing regions are ran-
domly selected to form the training set and the rest of the 2,540 images are utilized to
form the test set. Different numbers of images of training data are randomly selected
and labeled, while the other training data remain unlabeled. The number of selected
labeled data in each category is equal to 10, 20, 30, and 40, respectively. We repeat
each experiment for five random splits and report the average results over five trials.
Figure 9 shows the face recognition accuracy rates of the test dataset. Although the
recognition accuracies of Semi-DBN, BDBN, Imputing RBM, PGBM, and SBDBN are
all higher than 80%, the recognition accuracy of FEBDN is the highest. As we know,
Semi-DBN and BDBN equally trust on the available features and forecast unreliable
features. The missing features located in the important facial regions will influence
the recognition accuracies of them. It is obvious that the performance of PGBM and
SBDBN is similar, and the performance of Imputing RBM is worse than them. These
results are consistent with our previous discussion. Two examples of the average re-
liability update process with the estimated image are shown in Figure 10. With the
aid of the bidirectional inference by Field Effect RBMs, the reliability of the estimates
of the missing features is automatically and adaptively adjusted. With the increase in
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Fig. 11. Incomplete similarity comparison of DBN and FEBDN.

reliability, the estimated images are more and more similar with the ground-truth
image without missing features. In this experiment, we also compare the recognition
accuracies of FEBDN with some existing representative methods for each type of ap-
proach, including GEOM (without estimation), k-NNE (with estimation), and WII (joint
optimization). When the number of selected labeled data in each category is equal to
40, the average accuracy of GEOM, k-NNE, and WII is 89.25%, 93.19%, and 91.06%,
respectively. We could find that FEBDN is also better than these representative tradi-
tional algorithms.

In the second experiment of this dataset, we verify the autoencode ability of proposed
FEBDN based on the incomplete similarity. In this experiment, we follow the parameter
setting of the DBN encoder in Hinton et al. [2006] with 1,024, 1,000, 500, 250, and 30
numbers of nodes. All units are sigmoid except for the 30 linear units in the code layer.
The whole parameter space is first learned by 40 labeled images per category and 110
unlabeled images per category. Then, for every query image in the training dataset,
the low-dimension output code is compared with the output code of images in the test
dataset. This incomplete similarity can be utilized to evaluate the high-level and low-
dimension representation ability for incomplete data. We demonstrate one example
of the incomplete similarity ranking results based on the Euclidean distance of the
low-dimension output codes in Figure 11. It is obvious that in the ranking results of
DBN, all the output codes with shorter distances are faces with missing eye parts. And
most of them are not the images of the identical person. Contrary to DBN, in FEBDN,
the output codes in the high-ranking level are the images of the same person with the
same expression but missing different regions.

4.4. Experiment on Face Image Dataset StarFace

To further prove the effectiveness of the proposed FEBDN in real natural images, we
collect and construct a new dataset, StarFace, from Google, including 120 face images
of David Beckham, Victoria Beckham, Tom Cruise, and Julia Roberts and 5,000 face
images from unknown people. Figure 12 shows some sample images in StarFace. We
can see that some of the sample images are frontal with no occlusions, such as the first
image of David Beckham and the first image of Victoria Beckham. It is also obvious
that several important facial feature regions have been occluded in some samples, such
as the second image of David Beckham, in which a hat has occluded his forehead, and
the third image of David Beckham, in which his eyes are hidden behind sunglasses. In
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Fig. 12. Sample images in StarFace.

Table IV. Comparisons of NDCG Scores in StarFace

FEBDN SBDBN DBN (Zero) DBN (Mean)
NDCG@10 0.4904 0.4208 0.3916 0.3787
NDCG@20 0.4135 0.3761 0.3289 0.3178

our experiment, for every occlusion region, we mark them as missing feature regions
in the preprocessing stage. We evaluate the autoencode ability of the proposed FEBDN
with its simplified version SBDBN and the classical DBN for face retrieval. For every
class, we randomly select 50 images as training data, and 10 of them are labeled. In
the remaining test data, we randomly select one image of the pop stars’ faces with an
important facial region missing as the query image. We measure the performance over
five random splits and report the average results over the five trials. We calculated
the Euclidean distance of the output codes between the query and other images in the
test dataset to order the retrieved images. The mean value of Normalized Discounted
Cumulative Gain (NDCG) is utilized to validate the retrieval results. NDCG measures
the performance of a recommendation system based on the graded relevance of the
recommended entities. This metric is commonly used in information retrieval. From
the NDCG scores in Table IV, the FEBDN has better retrieval performance.

5. CONCLUSIONS

In this article, we propose a novel deep learning model, FEBDN, for image recognition
with incomplete data. FEBDN has several attractive characteristics. First, incomplete
image recognition is a classic challenge in computer vision and machine learning.
But little work has been proposed to address this problem via deep learning meth-
ods. FEBDN is a deep learning model developed specifically for this problem. Second,
inspired by attentional modulation in vision, we construct the reliability function to
model the quality of features by reference to the output characteristic curve and oper-
ating modes of FET. Third, by integrating the reliability of features into the learning
procedure, FEBDN can jointly determine the classification boundary and estimate the
missing features. Moreover, in our experiments, FEBDN shows the distinguishing and
robust ability to recognize incomplete data. FEBDN also achieves an effective estimate
for the missing features in incomplete images. In the future, we will explore propos-
ing a technique to identify the occluded regions in incomplete images and integrate
it with the incomplete image classification technique. Due to the various origins of
incomplete data, learning to find occlusion regions in incomplete data is a challenging
problem. Most of the existing work for detection of occlusions is based on the informa-
tion from consecutive frames, such as object boundaries, texture, or flow features in
visual surveillance. Currently, we aim to address the recognition of incomplete data
and the estimation of missing features. Based on these considerations, the occluded
regions are marked missing in a preprocessing phase. We will investigate how to
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combine the automatic occlusion region detection and incomplete recognition algo-
rithms in a unified framework.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 61502311, No. 61373122),
Natural Science Foundation of Guangdong Province (No. 2016A030310053), Special Program for Applied
Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Science and
Technology Innovation Commission of Shenzhen under Grant (No. JCYJ20150324141711640), and Shenzhen
University research funding (201535).

REFERENCES
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