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Abstract. Emotion recognition is the task of recognizing a person’s emotional
state. EEG, as a physiological signal, can provide more detailed and complex
information for emotion recognition task. Meanwhile, EEG can’t be changed
and hidden intentionally makes EEG-based emotion recognition achieve more
effective and reliable result. Unfortunately, due to the cost of data collection,
most EEG datasets have small number of EEG data. The lack of data makes it
difficult to predict the emotion states with the deep models, which requires
enough number of training data. In this paper, we propose to use a simple data
augmentation method to address the issue of data shortage in EEG-based
emotion recognition. In experiments, we explore the performance of emotion
recognition with the shallow and deep computational models before and after
data augmentation on two standard EEG-based emotion datasets. Our experi-
mental results show that the simple data augmentation method can improve the
performance of emotion recognition based on deep models effectively.
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1 Introduction

Emotional recognition is the process of identifying human emotional state. As an
interdisciplinary field, the research of emotional recognition is benefited from the
development of psychology, modern neuroscience, cognitive science, and computer
science as well [1]. For computer science, the emotion recognition based on computer
system aspires to enhance human-machine interaction across a wide range of appli-
cation domains including clinical, industrial, military, gaming and so on [2].

Various approaches have been proposed for emotional recognition and can be
divided into two categories [2]. The first category is using the features of emotional
behavior, such as facial expression, the tone of voice, body gestures and so on, to detect
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a specific emotion. The second category is taking advantage of the physiological
signals to recognize emotions. These physiological signals include the electroen-
cephalograph (EEG), electrocardiograph (ECG), pulse rate, respiration signals, etc.
Compared with the former, the physiological signals not only provide more detailed
and complex information for estimating emotional states but also yield more effective
and reliable recognition results.

Up to now, a number of EEG-based emotion recognition methods have been
studied. Emotional recognition mainly includes the two modules: feature extraction and
emotion classification. As a time-series signal, the EEG original signal has potential
information and can’t be directly used for emotion recognition [3]. In order to fully
exploit the potential information, the classifier uses the feature data as input to identify
the emotional states. In the traditional EEG-based emotion recognition methods, many
studies explored the effects of emotional recognition using the traditional machine
learning models as the classifiers, such as Support Vector Machine [4–6], K Nearest
Neighbors [7–9], and so on.

In recent years, deep learning techniques have received widespread attention and
achieved remarkable results in many fields. Using the deep learning model as a clas-
sifier to complete the classification task, especially in the image recognition task, show
an appreciable performance [10, 11]. Recently, the deep learning method has been
applied to the study of the EEG-based emotional recognition [12–14]. Zheng and Lu
compared the performance of the deep learning models with the feature-based shallow
models on EEG-based emotion recognition and showed the superior performance of the
deep learning models [1]. Based on the above achievements, it is necessary for us to
promote exploration on the EEG-based emotion recognition with deep learning models.
However, compared with the shallow models, the deep learning models, for example,
the deep convolution neural network, have more model parameters, which makes the
training of deep learning models requires a large number of labeled training samples.
But due to the expensive cost, for EEG-related task, only a limited amount of labeled
data can be obtained to train the model. For most public EEG datasets, they only have a
few hundred samples, which are collected for different tasks with different specifica-
tions. Thus, if we try to further explore deep learning models on the task of EEG-based
emotional recognition, getting sufficient and effective labeled training data based on
existing datasets is the primary issue needs to be addressed.

In this paper, we focus on applying simple data augmentation method to generate
more EEG training samples. After that, we compare the performance of EEG-based
emotion recognition with the shallow and the deep models before and after data
augmentation.

The rest of this paper is organized as followings. Section 2 briefly reviews the
representative work on EEG-based emotion recognition. In Sect. 3, we introduce our
proposed method in detail. In Sect. 4, we provide a series of experiments to validate the
proposed method on the standard datasets. The paper is closed with the conclusion and
future work.
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2 Related Work

EEG-based emotion recognition, as an important branch of emotion recognition, has
received much attention in the past decades. Davidson and Fox investigated that infants
show greater activation of the left frontal than of the right frontal area in response to the
happy segments [15]. Klimesch et al. proposed the beta frequency band of EEG reflects
the emotional and cognitive patterns [16]. Li and Lu indicated that gamma band of
EEG can be used for classifying happiness and sadness [17]. In the early 21st century,
the rapid development of dry electrode technologies and wearable devices allows us to
record and analyze the EEG signals from the laboratories to the real environment. At
the same time, the application of EEG-based emotion recognition in real-world has also
been further promoted. Sourina et al. proposed to combine music therapy process with
the real-time EEG-based human emotion recognition algorithm [18]. Kothe and
Makeig collected the real-time EEG signals to perform two-class discrimination task
between “high” and “low” workload levels [19]. Shi et al. proposed to use the extreme
learning machine to perform the EEG-based vigilance estimation [3].

As can be seen from the above, the study of EEG-based emotional recognition has
never stopped. Recent years, various studies about using machine learning techniques
to establish emotion recognition model have been presented. Chanel et al. used EEG
time-frequency information as features and SVM as a classifier to distinguish three
emotional states [20]. Heraz and Frasson reported using the amplitudes of four EEG
components as features and KNN as a classifier to characterize EEG signals into eight
emotional states [21]. Zheng et al. used some commonly used features obtained from
various frequency bands and discriminative Graph regularized Extreme Learning
Machine as a classifier to build EEG-based emotion recognition systems [22].
Recently, deep learning models are applied to process EEG signals. Li et al. applied a
DBN model to detect the emotional states from EEG signals. They compared the result
with five baselines and got the improvement from 11.5% to 24.4% [23]. Mao et al.
proposed two new architectures of convolutional neural networks and proved the
potential of deep learning methods for real-life EEG-based biometric identification
[24]. Li et al. designed a hybrid deep learning model that combined the CNN and RNN
for mining inter-channel correlation and contextual information from EEG frames [25].
So far, using deep learning methods to identify emotions from EEG signals is still in its
infancy. Due to the limitation of the cost of data collection, the labeled EEG samples
that can be used to train the deep learning models are significantly insufficient.
Therefore, augmenting the labeled EEG samples is the key to promoting the use of
deep learning techniques for EEG-based emotional recognition.

3 The EEG-Based Emotional Recognition Framework Based
on Data Augmentation

In this paper, we propose to use data augmentation on EEG-based emotion recognition
task. The whole process including training and testing stages is demonstrated in Fig. 1.
The EEG signals are recorded while subjects are watching emotional videos. The
differential entropy (DE) feature is extracted from the recorded EEG signal. In the
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training stage, we use the data augmentation method to generate more EEG data. These
data are input to the classifier to train a learned model. And this model is used to predict
the label of EEG data in the test stage.

3.1 Feature Extraction

In our method, we extract the differential entropy (DE) feature from the recorded EEG
signal segment. It has been shown that DE features can obtain the superior performance
in comparison with other commonly used features [1, 22]. For the time series
X obeying the Gauss distribution N (l, r2), its DE can be defined as the following
formulation:

hðXÞ ¼ �
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp�
x�lð Þ2
2r2 log

1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp�
x�lð Þ2
2r2

� �
dx ¼ 1

2
log 2per2 ð1Þ

where l is the mean value and r is the standard deviation. For a fix length EEG signal,
DE feature is equivalent to the logarithm energy spectrum in a certain frequency band
[2, 3]. Assume that the EEG signal is recorded with n-channel and the length of an EEG
signal segment is l s. First, we apply the band pass filter to obtain the 5 frequency
bands of each channel. The ranges of the filter are delta (1–3 Hz), theta (4–7 Hz), alpha
(8–13 Hz), beta (14–30 Hz), gamma (31–50 Hz). Then, we use a 256-point short-time
Fourier transform with a non-overlapped Hamming window of 1 s to obtain the energy
spectrum of each specified frequency band. After that, we extract the DE feature for
each frequency band by calculating the logarithm energy spectrum. Thus, the DE
feature for each second consists of n-channel DE calculated across 5 frequency bands.
After feature extraction, the size of each EEG feature sample is n � l � 5.

Fig. 1. The EEG-based emotional recognition framework based on data augmentation.
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3.2 Data Augmentation

Data augmentation is the process of generating new samples by transforming training
data, with the aim of improving the accuracy and robustness of classifiers [26].
Improper data augmentation methods are likely to increase the amount of the samples
that are not informative enough, which will do not even reduce the recognition
accuracy and robustness of recognition systems. In our work, we consider using the
commonly used data augmentation methods in images processing to increase the
number of EEG samples.

There are two basic data augmentation approaches used in images processing:
geometric transformation and noise addition. Geometric transformations, including
shift, scale, rotation/reflection and etc., are not directly suitable for enlarging our EEG
data. Compared with the image, the EEG signal is a continuous signal that changes
over time. Even if the feature extraction is performed, its features are still a time series.
Thus, if we rotate or shift the EEG data, the feature of time domain will be destroyed.
To avoid this problem, we further consider using the noise addition method to augment
the EEG samples. In theory, there are many ways for us to add noise (Gaussian,
Poisson, Salt, Pepper, etc.) into the EEG data. But EEG signal has a strong randomness
and non-stationarity. If we randomly add some local noises, such as Poisson noise, Salt
noise, or Pepper noise, which will change the features of EEG data locally.

Based on these considerations, in our work, we focus on adding Gaussian noise to
each feature sample of the original training data to obtain new training samples. The
probability density function P of a Gaussian random variable z is defined by:

PGðzÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e�
z�lð Þ2
2r2 ð2Þ

where z represents the grey level, l is the mean value and r is the standard deviation. In
our work, in order to ensure that the amplitude value of the sample will not be changed
with the addition of noise, we generate the Gaussian noise with l = 0. Under this
premise, in order to explore the effect of different noise intensity (standard deviation)
on the work of EEG data augmentation, the value of r is set to 0.001, 0.01, 0.02, 0.1,
0.2, and 0.5. We use m to represent the augmented multiple. When m = 1, it means
there is no data augmentation stage, and the train samples input into the classifier only
include the original training data.

3.3 Machine Learning Models

In this paper, we use three machine learning models as the classifiers to recognize
EEG-based emotion category. These three models are support vector machine (SVM),
LeNet, and ResNet.

SVM. As a commonly used machine learning model, the basic idea of SVM is to map
the input data to a high-dimensional feature space via a kernel transfer function, in this
new space, these input data will be easier to be separated than that in the original
feature space [1]. SVM is often used in EEG-based emotional recognition tasks [27–
29]. In our work, the input of SVM model is the DE feature of EEG signal segment
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with duration of 1s. In order to meet the demand of SVM for the input, we transform
the size of DE feature sample from n � 1 � 5 to 1 � (n � 5). Each EEG signal
segment will be divided into l samples. In training, all these l samples of each EEG
signal segment have the same emotional labels with the corresponding EEG signal
segment. In test, we obtain the predictive emotional label of an EEG signal segment by
counting the frequency of the predictive labels of the l test samples corresponding to
this EEG segment. The most frequently emotional predictive label will be identified as
the predictive label for this EEG segment.

LeNet. LeNet is a typical convolutional network for recognizing characters. It can learn
complex, high-dimensional, nonlinear mappings from large collections of examples
[10]. In our work, the architecture of LeNet is C32@32 � 32- P32@16 � 16-
C32@16 � 16- P32@8 � 8- C64@8 � 8- P64@4 � 4- C64@1 � 1- F3, which
contains four convolutional layers (denoted by C with the number and output size of the
feature map), three pooling layers (denoted by P with the number and output size of the
feature map) and one fully-connected layer (denoted by F with the number of output).
The input sample of this model is the DE feature of EEG signal segment with duration of
62 s. The size of an input sample is n � 62 � 5. Each EEG signal segment will be
divided into l/62 samples. We use the same method of counting the frequency with SVM
to obtain the predictive label for each EEG test segment.

ResNet. ResNet can ease the training of deeper network with a residual learning
framework. It has been proven that this network is easier to optimize, and can gain
accuracy from considerably increased depth [30]. In our work, we use the ResNet to
establish the EEG-based emotion recognition model. The architecture of this network is
C64@62 � 62- P64@56 � 56- C64@56 � 56- C64@56 � 56- C256@56 � 56-
C128@28 � 28- C128@28 � 28- C512@28 � 28- C256@14 � 14- C256@14
� 14- C1024@14 � 14- C512@7 � 7- C512@7 � 7- C2048@7 � 7- P2048@1 �
1- F3. It contains thirteen convolutional layers, two pooling layers, and one
fully-connected layer. It has been proven that alpha, beta and gamma bands of EEG are
more predictive to the emotional states compared with the delta and theta bands [1, 17].
In our experiment, we use the feature of the three high frequency bands (alpha, beta,
and gamma) as the input of ResNet. The size of an input sample is n � 62 � 3. We use
the same voting method with LeNet to obtain the predictive label for each EEG test
segment.

4 Experiments

4.1 Experimental Setting

In this paper, we investigate the performance of EEG-based emotion recognition with
the shallow and deep model before and after data augmentation on two standard
EEG-based emotional datasets: SJTU Emotion EEG Dataset (SEED) [1] and
MAHNOB-HCI dataset [31]. Two classical convolutional neural networks are utilized
in this work, including LeNet and ResNet. SVM, which is a representative shallow
model, is included in our comparison. We use LIBSVM Toolbox [32] to implement
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SVM classifier and use the linear kernel and the grid optimization to find the optimal
value of C in the parameter space [2−10:210] with a step of one. The LeNet and ResNet
are implemented by the MATCONVNET Toolbox [33]. To the parameters for LeNet
and ResNet, we follow the general setting in MATCONVNET. For example, the
learning rate is set to 0.1, and the batch size is set to 100. All statistical experiments are
repeated for five times, and the average results are reported.

4.2 Experimental Results on SEED Dataset

As a standard dataset for emotion recognition, the SEED dataset consists of 630 EEG
segments of 14 subjects while watching 15 emotional film clips for three sessions,
which were recorded by the EEG cap according to the international 10–20 system for
62 channels. For every EEG segment, the duration is about 4 min. After perform the
processing, the raw EEG data is downsampled to 200 Hz sampling. Three basic
emotion states are included in this dataset: positive, neutral and negative. Each emo-
tional state is with an equal number of segments. In our experiment, we segment every
original segment into three short EEG samples with the length of 62 s. Totally, there
are 1890 samples for the experiments. For these samples, all the samples of the first
nine segments in each session are utilized as the training data, the rest are used as the
test data.

In this section, we first compare the accuracies of EEG-based emotion recognition
based on SVM, LeNet and ResNet models without data augmentation. In addition, we
also explore the effect of dimensionality reduction on emotion recognition. In the
experiment, we use the Principle component analysis (PCA) algorithm to reduce the
original feature dimension. Table 1 shows the emotion recognition accuracies of these
models without data augmentation. Among them, SVM is selected as the compared
model because it is also applied as the classifier for emotion recognition on the same
dataset [1, 22]. LeNet and ResNet for EEG-based emotion recognition are applied and
implemented by ourselves.

From these results, we can find that the accuracies of three models are different. For
the SVM model, the accuracy is 74.2%, which is better than the performance of LeNet
and ResNet. When we use PCA to reduce the original 310 dimensional feature to 160
dimensions, 210 dimensions and the number of PCA dimensions retaining the top 95%
energy, the accuracies drop from 74.2% to 56.9%, 58.1% and 49.8%. We can see that
dimensionality reduction will affect the accuracy of emotion recognition to a certain
extent. That is because the complexity of EEG data makes the simple dimension
reduction method may not be able to preserve the important discriminative information

Table 1. The average accuracy of three models on the original data without data augmentation.

Models SVM
[1]

PCA + SVM
(95% energy)

PCA [22]
+ SVM (160
dimensions)

PCA [22]
+ SVM (210
dimensions)

LeNet ResNet

Accuracy (%) 74.2 49.8 56.9 58.1 49.6 34.2
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of original domain information. This result is also consistent with the conclusion of
existing work [22]. However, it can be found that these results are still better than the
results of two deep learning models. We believe that the consistency of the number of
training samples and the number of free parameters in the model is the main factor that
affects the experimental results. For the LeNet used in our work, there are about 4000
network parameters that need to be learned. For the ResNet, the number of the network
parameters in it is more than 20000. Unfortunately, in this experiment, only 1134
training samples can be used in the training stage of the recognition model. The number
of training samples can’t meet the requirement of the deep learning models. Compared
with these deep learning models, SVM shows better emotional accuracy because SVM
is not sensitive to the number of sample.

As we have described in Table 1, the lack of EEG training samples may affect the
accuracy of emotional recognition of those deep models. In order to prove this con-
jecture and solve this problem, we use the proposed data augmentation method in
Sect. 3.2 to increase the amount of training samples and test its effect on LeNet.
Table 2 shows the recognition accuracies of LeNet trained by the augmented training
data. From the table, we find that data augmentation can effectively improve the
performance of LeNet. We can achieve the best accuracy of 74.3% when the standard
deviation is 0.2 and the number of training samples is augmented to 30 times. The
standard deviation of Gaussian noise used in data augmentation and the scale of the
augmented training data will affect the performance. Too small or too large standard
deviation can’t generate the effective new samples.

We have already proved that data augmentation method can improve the perfor-
mance of EEG-based emotion recognition with LeNet. In order to further explore
whether this method is also effective for other machine learning models, we also
conduct experiments on SVM and ResNet with the augmented data. In Fig. 2, the
emotion recognition accuracies of SVM, LeNet and ResNet obtained before and after
data augmentation are demonstrated. In experiments, we follow the best parameter
setting of data augmentation obtained in Table 2. For each model, the mean value l is
set to be 0, and the standard deviation is set to be 0.2. For LeNet and ResNet, the
training-data is augmented to 30 times. Owing to the extremely high computational
complexity, the LIBSVM Toolbox only permits the number of training samples to be
augmented 5 times. Hence, in this experiment, for SVM, the training data is only
augmented to 5 times.

Table 2. The average accuracy (%) of data augmentation on LeNet.

Augmented
multiple (m)

Standard deviation of Gaussian
noise (r)
0.001 0.01 0.02 0.1 0.2 0.5

5 67.4 68.8 66.6 68.1 69.0 61.6
20 69.9 70.2 68.3 71.7 73.4 70.8
30 68.9 69.8 68.9 71.4 74.3 70.9
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From Fig. 2, we can see that increasing the amount of input training data cannot
improve the recognition accuracy of SVM (74.2% vs. 73.4%). As we known, SVM is
insensitive to the number of training data [34]. As with LeNet, data augmentation can
effectively improve the accuracy of ResNet. Compared with LeNet, the input sample of
ResNet only includes the DE feature of three frequency bands of EEG signals. Under
this situation, the accuracy of ResNet is improved from 34.2% to 75.0%, better than the
LeNet (from 49.6% to 74.3%). These results also evidence that data augmentation is a
useful method to address the issue of the lack of training samples.

In the last experiment of this dataset, we have explored the contribution of low and
high frequency bands for emotion recognition. In detail, the high frequency bands
include: alpha, beta, and gamma. The low frequency bands include: delta, theta, and
alpha. The emotion recognition accuracies of the low and high frequency bands with
ResNet before and after data augmentation are shown in Fig. 3. From the figure, we
can find that the accuracy of the three low frequency bands before and after data
augmentation is 33.3% and 57.6%, respectively, both of which are lower than the
high-frequency bands.

4.3 Experimental Results on MAHNOB-HCI Dataset

The MAHNOB-HCI dataset, a multi-model dataset for affect recognition and implicit
tagging, includes the EEG data recorded by the EEG cap according to the international
10–20 system for 32 channels. The length of the emotional video as the stimulus is
between 34.9 and 117 s. Before the feature extraction, we remove the artifacts from the
original EEG data and use the average reference as the virtual reference. In our
experiments, we divide the EEG segments into three classes according the self-reported
feeling of the subjects in valence space, negative (1–3), neutral (4–6) and positive
(7–9). Totally, there are 188 negative, 208 neutral samples and 131 positive samples.

In Sect. 4.2, we have explored the effect of data augmentation on the SEED dataset.
In this section, in order to verify the universality of our proposed data augmentation
method, we continue to perform experiments on the MAHNOB-HCI dataset and
compare the performance before and after data augmentation on shallow and deep

Fig. 2. The average accuracy of three models
trained before and after data augmentation.

Fig. 3. The accuracies of the high and
low frequency bands on ResNet.

90 F. Wang et al.



models. In Table 3, we show the best emotion recognition results obtained by different
models on the MAHNOB-HCI dataset. For SVM, the training data is augmented to 30
times, the mean value l is set to be 0, and the standard deviation is set to be 0.2. For
ResNet, the training data is augmented to 30 times, the mean value l is set to be 0, and
the standard deviation is set to be 0.01. In the confusion matrices of Table 3, the row
represents the predicted label, the column represents the ground truth, and the number
denotes the recognition accuracy in percentage.

From Table 3, we can learn the details of SVM and ResNet before and after data
augmentation on the MAHNOB-HCI dataset. For SVM, we can see that the average
accuracy is improved from 42.5% to 44.3% after data augmentation. Among the three
categories, the neutral emotion can be recognized with high accuracy, and after data
augmentation, the classification performance of the neutral emotion and positive
emotion are improved. However, for the shallow model, SVM, the proposed data
augmentation method does not improve the recognition accuracy of negative emotions.
For ResNet, we can find that data augmentation can also improve the performance of
emotion recognition (from 40.8% to 45.4%). Before data augmentation, ResNet con-
fuses the positive emotion with the neutral and negative emotions. Data augmentation
can significantly improve the accuracies of positive and negative emotion for ResNet.

5 Conclusion

In this paper, we propose to use the data augmentation method to solve the problem
that the amount of EEG data can’t meet the needs of EEG-based emotional recognition
with deep models. In order to explore the effect of data augmentation, we conduct a
series of experiments on two standard EEG-based emotion recognition datasets. On the
SJTU dataset, we first compare the accuracy of shallow (SVM) and deep models
(LeNet, ResNet) without data augmentation. We find that the shallow model can
achieve better performance than the deep model. Then, we use the proposed data
augmentation method to generate new training samples. By analyzing the experimental
result, we find that the data augmentation method can effectively improve the perfor-
mance of deep models. In order to further confirm the effectiveness and universality of

Table 3. The confusion matrices for recognition accuracy (%) of different models on the
MAHNOB-HCI dataset before and after data augmentation (row: predicted label; column:
ground truth)

SVM ResNet

Before After Before After
Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.

Neg. 0 0 0 0 0 0 8.1 4.3 9.3 56.5 44.9 41.9
Neu. 93.5 95.7 81.4 96.8 98.6 79.1 91.9 95.7 90.7 16.1 34.8 11.6
Pos. 6.5 4.3 18.6 3.2 1.4 20.9 0 0 0 27.4 20.3 46.5

Acc. 42.5 44.3 40.8 45.4
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our proposed method, we validate the experiment on the MAHNOB-HCI dataset. Our
results show that the data augmentation is a useful method to address the issue of the
lack of training samples in EEG data for deep learning models. In future, we will seek
to use other data augmentation methods, such as generative adversarial networks, to
generate more effective samples of EEG data and improve the performance of
EEG-based emotion recognition.
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