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ABSTRACT
In this paper, we present a novel algorithm called manifold
ordinal regression (MOR) for image ranking. By modeling
the manifold information in the objective function, MOR is
capable of uncovering the intrinsically nonlinear structure
held by the image data sets. By optimizing the ranking
information of the training data sets, the proposed algo-
rithm provides faithful rating to the new coming images.
To offer more general solution for the real-word tasks, we
further provide the semi-supervised manifold ordinal regres-
sion (SS-MOR). Experiments on various data sets validate
the effectiveness of the proposed algorithms.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—pat-
tern analysis

General Terms
Algorithms

Keywords
Manifold learning, ordinal regression, manifold ordinal re-
gression, semi-supervised learning, semi-supervised manifold
ordinal regression, image ranking

1. INTRODUCTION
Image ranking has attracted much attention in the last

decade [11, 6, 12]. Many learning algorithms have been de-
veloped to tackle this problem, such as the regression based
methods [2], the manifold learning based approaches [5, 8],
and the probability based models [6].

In this paper, we present a novel algorithm called mani-
fold ordinal regression (MOR) for image ranking, which is
motivated by two observations. First, image ranking can be
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Figure 1: Schematic illustration of manifold ordinal
regression on the data set with nonlinear geometry.

naturally formulated as an ordinal regression problem. Sup-
pose that a human being is asked to rank the images accord-
ing to a given query. There might be several rating scales
in one’s mind, such as “very relevant”, “relevant”, “partially
relevant”, or “irrelevant”. Unlike the multi-class classifica-
tion, ordinal regression not only recognizes whether the data
points belong to the same group or not, but also provides
the rank information of different data groups. Moreover,
compared with the regular regression, the range of ordinal
regression function is discrete and finite, which matches the
rating scales in the human mind.

Second, manifold learning is an appropriate tool for im-
age analysis. As an important category of nonlinear fea-
ture extraction technologies, manifold learning uncovers the
intrinsic structure of data sets by assuming that the high-
dimensional observations lie on or close to a low-dimensional
manifold [14, 10, 1]. Many image data sets hold the non-
linear structures in their original high-dimensional feature
spaces [14, 10, 18], which makes manifold learning being an
appropriate tool for the image analysis task [5, 8, 9].

Although some effective manifold learning methods have
been developed for clustering and classification [15, 9], they
are not directly applicable to ordinal regression. Figure 1
provides an illustration. Given the query “man wearing
glasses”, we can rank the images accordingly: 1) the im-
ages of the man wearing glasses are ranked as very relevant;
2) the images of the man not wearing glasses are ranked
as partially relevant; and 3) the images of the woman not
wearing glasses are ranked as irrelevant. For clustering or
classification, we prefer the projection that maximizes the
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separability, so w1 is the optimal axis for data mapping.
However, the projection on w1 cannot preserve the ranking
information of different data blocks, which is of great im-
portance in our task. To keep both ranking information and
manifold structure, the projection on w2 is preferred.

According to above considerations, we proposes a novel
algorithm MOR to seek the explicit function that projects
the original data to the one-dimensional ranking axis. To of-
fer more general solution for real-word tasks, we further de-
velop the semi-supervised manifold ordinary regression (SS-
MOR), which learns the ordinal regression function using
both labeled and unlabeled data under the proposed model.

2. MANIFOLD ORDINAL REGRESSION
Let {(xi, yi)} (i = 1, ..., n) be the training set, where

xi ∈ Rd denotes the input data point and yi ∈ {1, ..., k}
denotes the corresponding rank label. In order to perform
ordinal regression under the manifold learning framework,
we formulate the objective function of MOR as follows:

min J(w, γ) =

n∑
i,j=1

(wT xi −wT xj)
2Aij − Cγ

s.t. wT (mr+1 −mr) ≥ γ, r = 1, ..., k − 1,

(1)

where w ∈ Rd is the projection vector, A is the n× n adja-
cency matrix constructed to model the neighborhood rela-
tionship between data points, mr denotes the mean vector
of samples from rank r, nr is the number of data samples in
rank r, γ is the margin between the projected means of two
consecutive ranks, and C ≥ 0 is a penalty coefficient used
to balance the manifold structure and order information.

2.1 Neighborhood Graph Construction
In MOR, we use the Heat kernel [1] to assign the weight

on the neighborhood graph, i.e., Aij = exp(−d(xi,xj)
2/2σ)

if j ∈ Ni and i ∈ Nj ; and Aij = 0 otherwise. Here d(xi,xj)
denotes the distance between xi and xj , Ni is the index set of
the K nearest neighbors of xi, and σ =

∑n
i=1 d(xi,xiK )2/n,

where xiK is the Kth nearest neighbor of xi.
To integrate the order information into the neighborhood

graph, we define d(xi,xj) = (|yi− yj |+1)||xi−xj ||2, where
| · | denotes the absolute value operator and || · ||2 denotes
the L2-norm operator. Compared with the L2 distance, the
distance between data points within each rank is kept un-
changed while the distance between data points from differ-
ent ranks is enlarged. Furthermore, the rank difference is
properly reflected by the extent of enlargement.

In the neighborhood graph construction procedure, we
utilize the order information from the local perspective. In
the objective function (1), we aim to maximize the distance
between two consecutive ranks, which considers the order
information using a global manner. By incorporating the
order information from both local and global perspectives,
a unified manifold learning model is formulated for ranking.

2.2 Optimization Procedure
We first rewrite (1) as follows:

min J(w, γ) = wT XLXT w − Cγ

s.t. wT (mr+1 −mr) ≥ γ, r = 1, ..., k − 1,
(2)

where X = [x1, ...,xn] is the data matrix, L = D − A is
the n× n Laplacian matrix [1], and D is a diagonal matrix

defined as Dii =
∑n

j=1 Aij (i = 1, ..., n). Then we obtain

the Lagrangian equation of (2):

L(w, γ, α) = wT XLXT w − Cγ

−
k−1∑
r=1

αr

(
wT (mr+1 −mr)− γ

)
,

(3)

where αr are the Lagrange multipliers which satisfy αr ≥ 0.
The necessary conditions for the optimality are:

∂L

∂w
= 0 ⇒ w =

1

2
(XLXT )†

k−1∑
r=1

αr(mr+1 −mr),

∂L

∂γ
= 0 ⇒ C =

k−1∑
r=1

αr,

(4)

where (XLXT )† is the Moore-Penrose pseudoinverse of XLXT .
Based on Eq. (4), (2) could be converted to:

min

k−1∑
r=1

αr(mr+1 −mr)
T (XLXT )†

k−1∑
s=1

αs(ms+1 −ms)

s.t.

k−1∑
r=1

αr =

k−1∑
s=1

αs = C, αr, αs ≥ 0, r, s = 1, ..., k − 1.

(5)
Above is a convex quadratic programming (QP) problem
with linear constraints, which can be solved by some stan-
dard optimization algorithms. Then we can obtain w by
substituting αr into the first equation in (4). For any data
point x, we can determine its rank by the k nearest neigh-
bor classifier or by the decision function f(x) = min

r∈{1,...,k}
{r :

wT x− br < 0}, where br is defined as:

br =


wT (nr+1mr+1 + nrmr)

nr+1 + nr
r = 1, ..., k − 1,

max
i∈{1,...,n}

{wT xi} r = k.
(6)

2.3 Semi-Supervised Manifold Ordinal Regres-
sion

In many multimedia applications, labeled samples are of-
ten very expensive to obtain. Meanwhile, unlabeled samples
are relatively easy to get and can be very helpful in discover-
ing the global distribution of the data set [3, 19]. As shown
in Figure 2, the optimal axis for data mapping is w3 if we
consider both labeled and unlabeled images in the learning
procedure, which is different from the axis w2 learned using
only labeled images.

To offer more general solution for the real-world tasks, we
develop the semi-supervised manifold ordinal regression (SS-
MOR), which learns the ordinal regression function using
both labeled and unlabeled data under the proposed model.

Given the training set {x1, ...,xl,xl+1, ...,xn} ⊂ Rd, the
first l data points xi (i = 1, ..., l) are labeled as yi ∈ {1, ..., k}
and the remaining n− l data points xu (u = l + 1, ..., n) are
unlabeled. We minimize the following cost function [17]:

J(F) =
1

2

n∑
i,j=1

‖ Fi√
Dii

− Fj√
Djj

‖2Aij + µ

n∑
i=1

‖Fi −Yi‖2,

(7)
where Y denotes the n×k label matrix with Yij = 1 if yi =
j, and Yij = 0 otherwise; F denotes the final label matrix;
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Figure 2: Schematic illustration of semi-supervised
manifold ordinal regression on the data set with
both labeled and unlabeled data.

Fi and Yi denote the ith row of F and Y, respectively; and
µ > 0 is the regularization parameter. The first term of J(F)
ensures that nearby data points have similar labels, while the
second term of J(F) requires the consistency between final
labels and initial labels.

Differentiating J(F) with respect to F, we have

∂J

∂F
= F−D− 1

2 AD− 1
2 F + µ(F−Y) = 0. (8)

Then we can obtain F = µ
(
(1 + µ)I−D− 1

2 AD− 1
2
)−1

Y. If
the matrix is singular, we can use its Moore-Penrose pseu-
doinverse to replace the regular inverse. Finally, the label
ỹi of each data point xi (i = 1, ..., n) can be assigned by
ỹi = argmaxj=1,...,k Fij .

According to the new labels of originally unlabeled data,
we can calculate the new mean vector of each class: m̃r =
1

ñr

∑
ỹi=r xi, where ñr is the number of data samples in

class r (including the newly classified unlabeled data points).
Replacing mr with m̃r in (1) - (5), we can obtain the opti-

mal w̃ and the new decision function: f̃(x) = min
r∈{1,...,k}

{r :

w̃T x− b̃r < 0}, where b̃r is defined as follows:

b̃r =


w̃T (ñr+1m̃r+1 + ñrm̃r)

ñr+1 + ñr
r = 1, ..., k − 1

max
i∈{1,...,n}

{w̃T xi} r = k
(9)

3. EXPERIMENTS
In this section, we evaluate the performance of MOR and

SS-MOR on three data sets: the UMIST face data set [4], the
USPS digit data set [7], and the MSRA-MM image data set
[16]. The mean absolute error (MAE, i.e., 1

n

∑n
i=1 |ŷi − yi|)

[13] is used as the evaluation criterion. Here {ŷ1, ..., ŷn} de-
note the predicted ranks and {y1, ..., yn} are the true targets.
For all the statistical experiments, we repeat them for 20
times and report the average results. For simplicity, we set
the nearest neighbor number K = 10 and the regularization
parameter µ = 0.5 in our experiments.

3.1 UMIST Face Data Set
To intuitively illustrate that MOR is capable of preserv-

ing both rank information and manifold structure, we con-
duct an experiment using the data samples from the UMIST
face data set [4]. Consider the query “man wearing glasses”.
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Figure 3: Projection results of training and test data
on UMIST face data set using MOR.

Table 1: MAE of four algorithms on USPS data set
with different training/test partition sizes.

Train/Test MOR KDLOR SR LPP
100/10900 2.73± 0.22 2.50± 0.11 2.85±0.20 3.05±0.28
200/10800 2.47± 0.08 2.48±0.16 2.71±0.16 2.90±0.20
500/10500 2.00± 0.09 2.17±0.09 2.44±0.13 2.68±0.12
1000/10000 1.75± 0.04 1.82±0.03 2.29±0.10 2.60±0.11

Clearly, the images from three given classes can be ranked
accordingly: 26 images of the man wearing glasses are ranked
as totally match; 38 images of the man not wearing glasses
are ranked as partially match; and 20 images of the woman
not wearing glasses are ranked as unmatch.

Figure 3 shows the projection results of MOR. Each im-
age is gray scale and the resolution is 56 × 46, so the orig-
inal dimension is 2576. For each rank, 10 images are used
for training and the rest are used for test. Obviously, the
projected training data are arranged orderly with clear mar-
gins between consecutive ranks. Furthermore, the manifold
structure within each rank, i.e., the pose variation of each
person, is preserved in the projected space smoothly. For
test data, although there are overlaps between rank 1 and
rank 2, most of the samples are sorted correctly according
to their ranks, which means that the proposed algorithm
provides a faithful prediction on test data.

3.2 USPS Digit Data Set
We conduct two experiments on the United State Postal

Service (USPS) data set [7]. This data set of hand writ-
ten digital characters comprises 11000 normalized grayscale
images of size 16× 16, with 1100 images per class.

In the first experiment, our target is ranking the data ac-
cording to the true digit shown in the images. We compare
MOR to three representative algorithms: kernel discrimi-
nant learning for ordinal regression (KDLOR) [13], spec-
tral regression (SR) [2], and locality preserving projections
(LPP) [5]. For MOR and KDLOR, ten-fold cross validation
is employed to determine the parameter C. For each class, p
(= 10, 20, 50, 100) images are selected for training and the
rest are used for test. As shown in Table 1, MOR achieves
the best results in most of the cases.

In order to demo how the performance of proposed model
could be improved further when the labeled data are insuf-
ficient, in the second experiment, we test the SS-MOR by
fixing the number of labeled training data and introducing
the unlabeled training data. For each class, 10 images are
selected as labeled training data and u (= 10, 40, 90) images
are selected as unlabeled training data. As shown in Table 2,
the MAE of SS-MOR keeps decreasing when the number of
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Table 2: MAE of SS-MOR on USPS data set with
different numbers of unlabeled training data.

Labeled/Unlabeled Train 100/100 100/400 100/900
MAE of SS-MOR 2.68±0.19 2.39±0.16 2.21±0.19

Table 3: MAE of three algorithms on MSRA-MM
data set with different original feature spaces.

Features SS-MOR MOR KDLOR
BWCM 0.393± 0.072 0.423± 0.078 0.456± 0.061
HSV-CH 0.396± 0.037 0.429± 0.019 0.440± 0.046
CC 0.402± 0.027 0.425± 0.035 0.463± 0.038
EDH 0.379± 0.026 0.398± 0.028 0.431± 0.063
WT 0.403± 0.024 0.421± 0.036 0.430± 0.018

unlabeled training data increases, which indicates that uti-
lizing the unlabeled data in the training phase can improve
the performance of the proposed model.

3.3 MSRA-MM Image Data Set
We conduct two experiments on a heterogeneous data set,

which consists of 10 categories from the MSRA-MM image
data set [16]. These categories are: baby, car, dragons, foot-
ball, fruit, panda, party, school, tiger, and tree, each of which
contains about 1000 images. For each image, its relevance
to the corresponding query is labeled with three levels: very
relevant, relevant and irrelevant.

The first experiment demonstrates the performance of the
proposed MOR and SS-MOR on five different types of origi-
nal feature spaces: 225-D block-wise color moment (BWCM);
64-D HSV color histogram (HSV-CH); 144-D color correlo-
gram (CC); 75-D edge distribution histogram (EDH); and
128-D wavelet texture (WT) [16]. We compare the proposed
algorithms to KDLOR, which has already shown its effec-
tiveness in Table 1. For MOR and KDLOR, we randomly
select 10 labeled images from each category for training and
uses the rest for test. For SS-MOR, besides the 10 labeled
images, we further use 90 randomly selected images with-
out corresponding labels for training and uses the rest for
test. Table 3 shows the MAE of SS-MOR, MOR, and KD-
LOR. By jointly optimizing the manifold structure and the
order information, MOR outperforms the KDLOR. By in-
corporating the unlabeled data into the learning procedure,
SS-MOR further enhances the performance.

In the second experiment, we construct the original fea-
ture space by combining aforementioned five types of fea-
tures, and thus obtain a 636-dimensional vector for each
image. The other settings are the same as those in the first
experiment. Figure 4 shows the top ranking results gener-
ated by the SS-MOR for three categories: car, party, and
tiger, respectively. The proposed algorithm obtains good
results.

4. CONCLUSION
In this paper, we present a manifold ordinal regression

(MOR) approach for image ranking. The first term of MOR
objective function intends to preserve the manifold struc-
ture of the data set, while the second term aims to maximize
the margin between the projected means of two consecutive
ranks. By jointly optimizing these two terms, the projected
data are orderly sorted while the intrinsic manifold struc-
ture of the data set is well preserved. To adapt the real-
world applications, we present the semi-supervised manifold
ordinal regression (SS-MOR). Experiments on several stan-

car

party

tiger

Figure 4: Top ranking results of the proposed SS-
MOR for car, party, and tiger, respectively.

dard image data sets demonstrate that the proposed meth-
ods achieve good performance on the image ranking task.

5. ACKNOWLEDGMENTS
This work was supported by grant PolyU 5204/09E.

6. REFERENCES
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral

techniques for embedding and clustering. In NIPS 14, 2002.

[2] D. Cai, X. He, and J. Han. Spectral regression: a unified
subspace learning framework for content-based image retrieval.
In Proc. 15th ACM Multimedia, pages 403–412, 2007.

[3] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-Supervised Learning. MIT Press, 2006.

[4] D. B. Graham and N. M. Allinson. Characterizing virtual
eigensignatures for general purpose face recognition. In Face
Recognition: From Theory to Applications, NATO ASI Series
F, Computer and Systems Sciences 163, pages 446–456, 1998.

[5] X. He. Incremental semi-supervised subspace learning for image
retrieval. In Proc. 12th ACM Multimedia, pages 2–8, 2004.

[6] E. Hörster, M. Slaney, M. Ranzato, and K. Weinberger.
Unsupervised image ranking. In Proc. 1st ACM LS-MMRM
Workshop, pages 81–88, 2009.

[7] J. J. Hull. A database for handwritten text recognition
research. IEEE TPAMI, 16(5):550–554, 1994.

[8] Y.-Y. Lin, T.-L. Liu, and H.-T. Chen. Semantic manifold
learning for image retrieval. In Proc. 13th ACM Multimedia,
pages 249–258, 2005.

[9] Y. Liu, Y. Liu, and K. C. C. Chan. Supervised manifold
learning for image and video classification. In Proc. 18th ACM
Multimedia, pages 859–862, 2010.

[10] S. Roweis and L. K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326,
December 2000.

[11] Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: Current
techniques, promising directions, and open issues. J. Visual
Commun. Image Represent., 10:39–62, 1999.

[12] B. Siddiquie, R. Feris, and L. Davis. Image ranking and
retrieval based on multi-attribute queries. In CVPR, 2011.

[13] B.-Y. Sun, J. Li, D. D. Wu, X.-M. Zhang, and W.-B. Li. Kernel
discriminant learning for ordinal regression. IEEE Trans.
Knowl. and Data Eng., 22:906–910, 2010.

[14] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, December 2000.

[15] H. Wang, S. Yan, T. Huang, and X. Tang. Maximum unfolded
embedding: formulation, solution, and application for image
clustering. In Proc. 14th ACM Multimedia, pages 45–48, 2006.

[16] M. Wang, L. Yang, and X.-S. Hua. Msra-mm: Bridging
research and industrial societies for multimedia information
retrieval. Microsoft Technical Report, 2009.

[17] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In NIPS 16. 2004.

[18] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and
B. Schölkopf. Ranking on data manifolds. In NIPS 16. 2004.

[19] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
ICML, pages 912–919, 2003.

1396




