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Abstract. Object proposal aims to detect category-independent object
candidates with a limited number of bounding boxes. In this paper, we
propose a novel object proposal method on RGB-D images with the
constraint of depth connectivity, which can improve the key techniques in
grouping based object proposal effectively, including segment generation,
hypothesis expansion and candidate ranking. Given an RGB-D image,
we first generate segments using depth aware hierarchical segmentation.
Next, we combine the segments into hypotheses hierarchically on each
level, and further expand these hypotheses to object candidates using
depth connectivity constrained region growing. Finally, we score the
object candidates based on their color and depth features, and select the
ones with the highest scores as the object proposal result. We validated
the proposed method on the largest RGB-D image data set for object
proposal, and our method is superior to the state-of-the-art methods.

Keywords: Object proposal, RGB-D image, depth connectivity, con-
strained grouping

1 Introduction

Object proposal aims to indicate the positions of category-independent object
candidates in a given image with bounding boxes [1]. It can be used as a fun-
damental of numerous multimedia applications, such as object recognition [11],
segmentation [14], tracking [18], image annotation [19], saliency analysis [16]
and information retrieval [24]. Two paradigms are mainly used in current object
proposal methods, named window scoring and grouping [26]. The former samples
bounding boxes in a given image, measures the probability of each candidate box
in containing an object, i.e., “objectness”, and selects the boxes with the highest
objectness scores as object candidates; the latter over-segments a given image
into amounts of segments, and groups these segments into object candidates,
which probably enclose objects.

A key challenge in object proposal is the diversity and complexity of
object appearance in color representation. Figure 1 shows an example. The
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Fig. 1. An example of the difference between color appearance and depth appearance
in objectness representation. The monster truck is easier to distinguish in depth
appearance (b) than in color appearance (a).

monster truck in Fig. 1(a) has complicate color appearance, which is difficult to
distinguish from the complex scene. In contrast, it can be easily identified from
depth appearance in Fig. 1(b), because its surface is connected in depth while
its boundary is disconnected from background. We can see that depth provides
a powerful cue in detecting object candidates in RGB-D images [23]. However,
RGB-D images usually suffer from low quality problem on depth appearance,
which is caused by the limitation of capture devices and estimation algorithms,
including inaccurate boundary and serious noise. It hampers the performance
of object proposal methods, especially for the ones using pixel-level features,
such as edges [12]. Compared to window scoring used in most existing object
proposal methods on RGB-D images, grouping strategy has its natural advantage
in combining depth cue into object proposal, because they work on region level
necessarily. It helps to improve the robustness in handling low quality depth.

In this paper, we propose a novel object proposal method on RGB-D images
with the constraint of depth connectivity. It can improve the key techniques
in grouping based object proposal effectively, namely segment generation,
hypothesis expansion and candidate ranking. Figure 2 shows an overview of the
proposed method. We first generate segments using depth aware hierarchical
segmentation on ultra-metric contour map. Next, we combine the segments
into hypotheses hierarchically, and further expand these hypotheses to object
candidates with depth connectivity constrained region growing. Finally, we score
the object candidates based on their color and depth features, and select the ones
with the highest scores as the object proposal result. We validate the proposed
method on the largest public RGB-D image data set for object proposal, named
NJU1800. Our method is superior the state-of-the-art methods.

Our contributions mainly include:
– We define the depth connectivity between two segments, and utilize it to

measure inner depth connectivity and boundary depth connectivity of an
object candidate.

– We propose an object proposal method on RGB-D images with the constraint
of depth connectivity, which improves hierarchical segmentation, hypothesis
expansion and candidate ranking in grouping.

– We validate our method on the largest RGB-D image data set for object
proposal, and our method outperforms the state-of-the-art methods.
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Fig. 2. An overview of our proposed method. To a given RGB-D image, we first over-
segment it into segments. Next, we combine the segments into hypotheses and further
expand the hypotheses to object candidates. Finally, we score the object candidates
and select the ones with the highest scores as our result.

2 Related Work

2.1 Object proposal on RGB images

Two paradigms are mainly used in the existing object proposal methods, named
window scoring and grouping.

Window scoring based methods focus on the objectness measurement of the
sampled bounding boxes. Some hand-crafted features were proposed to measure
objectness, including object location and geometry properties [1], structured
edge [26] and binarized normed gradient [7]. The boxes were ranked based on the
extracted features, and the ones with the highest scores are selected as object
candidates. Window scoring based methods are usually efficient, but they are
hard to generate accurate candidates due to the limitation of discrete sampling.

In comparison, grouping based methods focus on segment generation and
grouping. Carreira et al. [4] utilized constrained parametric mincuts and merged
them based on object features, which was improved by applying edge detectors
and multiple gragh cut segmentations [9] . Uijlings et al. [20] proposed selective
search algorithm to merge similar super-pixels greedily, which could benefit
from the combination with multiple features [17], multi-branch hierarchical
segmentation [21], and region merging in high-complexity scenarios [22]. Ma-
nen et al. [15] merged randomized super-pixel connectivity graph with learned
features. Arbeláez et al. [3] utilized multiscale hierarchical segmentation and
combinatorial grouping with Pareto front model. Krähenbühl et al. [10] set
object-like seeds and used classifiers in geodesic transform as object proposal
results. Grouping based methods can provide more accurate candidates, but
they usually suffer from low efficiency problem caused by iterative grouping.

A proposal refinement strategy was proposed in [6], which refined object
candidates generated by different object proposal methods. The integration of
window scoring based methods and the refinement strategy can obtain a good
trade-off between proposal accuracy and efficiency [13].
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2.2 Object proposal on RGB-D images

Object proposal methods on RGB-D images mainly focus on exploiting the effect
of depth cue and integrating it into object proposal methods on RGB images.
Xu et al. [23] first brought depth into objectness measurement by adaptively
integrating color gradient and depth gradient. Liu et al. [12] detected multi-
layered structured edges by decomposing the sparse edge map according to
the corrected depth map, and ranked the bounding boxes with its maximum
scores on all the depth layers. Liu et al. [13] generated bounding boxes by edge
boxes method [26] and refined them through repartioning the super-pixels on
their boundaries. Zhang et al. [25] provided a proposal refinement strategy with
multiple trained high-level features, including CNN feature, depth geometric
feature and semantic context feature.

The exiting object proposal methods on RGB-D images concentrate on
extending windows grouping based methods and refinement strategies, but ignore
the improvement of grouping based methods, which may impede them from
generating object candidates with high accuracy.

3 Our Method

3.1 Depth connectivity measurement

Depth connectivity is the basic concept in our method, which is utilized to
improve the performance of the key procedures. In this subsection, we introduce
the measurement of depth connectivity.

In grouping based object proposal methods, a given image is first over-
segmented into many segments. Assume si and sj are two segments in the
given image, and the average depths of all the pixels within them are di and
dj , respectively. Here, depth is normalized to the value range of [0, 1], and larger
depth value means image content is nearer. If si and sj are adjacent, their depth
connectivity φi,j is defined as:

φi,j = 1− |di − dj |. (1)

If si and sj are not adjacent ,but they belong to a segment combination, their
depth connectivity is defined as:

φi,j = max
pk∈Pi,j

ϕk, (2)

where Pi,j is the set of all the connected paths between si and sj within the
segment combination; ϕk is the depth connectivity of pk. Let pk : si → sk1 →
· · · → skNk

→ sj , where Nk is the number of segments in pk except si and sj ,
ϕk is calculated as:

ϕk = min{φi,k1 , · · · , φkNk
,j}. (3)

From Eq. (1)-(3), we can see that depth connectivity between two segments is
in the value range of [0, 1]. Larger depth connectivity value means two segments
are more connected in depth.
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Based on depth connectivity between two segments, we further define inner
depth connectivity and boundary depth connectivity of an object candidate. To
an object candidate c, its inner depth connectivity is measured as follows:

ψin = min
si,sj∈Sc

φi,j , (4)

where Sc is the set of all the segments within c. The boundary depth connectivity
of c is measured as follows:

ψbd =
1

|Bc|
∑
si∈Bc

min
sj∈Ωi\Sc

φi,j , (5)

where Bc is the set of all the segments in the boundary of c; Ωi is the set of all
the segments surrounding si; |.| denotes the cardinality of a set.

3.2 Depth aware hierarchical segmentation

We first generate the ultra-metric contour map using [2], which contains the
contours weighted by brightness, color and texture gradients. The regions
surrounded by the contours are treated as the segments.

Since all the segments are separated by the contours, there is one and only
contour between every two segments. To two segments si and sj , we denote the
contour part between them as ei,j , and measure its strength as follows:

ωi,j = λωUi,j + (1− λ)(1− φi,j), (6)

where ωUi,j is the weight of ei,j in the ultra-metric contour map referring to [3];
φi,j is the depth connectivity between si and sj ; λ is a parameter for linear
combination, which equals 0.7 in our experiments. For the value ranges of both
ωUi,j and φi,j are [0, 1], the value range of ωi,j is [0, 1].

Based on edge strength, we further merge the segments into different
hierarchies {H∗,H1,H2, ...,HL} with Platt’s method [5]. Here, H∗ is the original
segments before merging and HL is the whole image. Based on the depth
connectivity between two segments, i.e., the item 1−φi,j in Eq. (6), we can merge
the adjacent segments with similar depth values, and prevent the merging of two
segments which are not connected in depth but similar in color appearance.

3.3 Depth connectivity constrained grouping

Based on {H∗,H1,H2, ...,HL} generated in hierarchical segmentation, we
further generate hypotheses by combining the segments into singletons, pairs,
triplets, and four-tuples on H1,H2, ...,HL−1, respectively. Inspired by [3], the
adjacent segments without intersection on different hierarchies are preferred in
hypothesis generation, and only the top fixed-number of hypotheses are retained.

Because the hypotheses are usually incomplete as compared to objects, we
expand the hypotheses to generate object candidates. Considering the surface of
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an object is usually connected in depth, we use a greedy region growing strategy
constrained by depth connectivity in hypothesis expansion. Assume ∆h is the
set of all the segments adjacent to a hypothesis h, we expand h iteratively till
no segment can be grouped:

h∗ ← h ∪ {si|si ∈ ∆h, φi,j ≥ τ}, (7)

where sj is a segment within h and it is adjacent to si; τ is a threshold,
which equals 0.95 to avoid over-expansion in our experiments. We expand all
the hypotheses and remove the repeated ones. The retained hypotheses after
expansion are treated as object candidates.

3.4 Depth connectivity weighted ranking

We score object candidates according to their color and depth features, and
select the ones with the highest scores for object proposal.

In object candidate scoring based on color feature, we use a trained maximum
marginal relevance model provided by [3], which uses the low-level features
including size, location, shape and boundary contour strength.

In object candidate scoring based on depth feature, we use both inner depth
connectivity in Eq. (4) and boundary depth connectivity in Eq. (5). A candidate
probably containing an object usually has high inner depth connectivity, because
the surface of an object is connected in depth, and low boundary depth
connectivity, because an object is usually disconnected from background in
depth. However, the overemphasis of inner depth connectivity or boundary
depth connectivity may degrade the performance of object proposal. Specifically,
the overemphasis of inner depth connectivity may cause the preference of
partial objects with similar depth, while the overemphasis of boundary depth
connectivity may increase the rankings of the combinations of multiple objects
with obvious boundaries. Hence, we balance the influences of inner depth
connectivity and boundary depth connectivity in scoring object candidates based
on depth features:

Sd = (ψin)γ − (κ(ψbd, δ))γ , (8)

where γ is a parameter to nonlinearly emphasize high depth connectivity, which
equals 4 in our experiments; κ is a function to punish high boundary depth
connectivity with a parameter δ, which returns ψbd when it is smaller than δ,
and 1 otherwise; δ equals 0.5 in our experiments. Sd is normalized to the value
range of [0, 1].

We combine the scores based on color and depth features linearly to obtain
the final score of each object candidate:

S = αSc + (1− α)Sd, (9)

where Sc is the score based on color feature; α is a parameter for combination,
which equals 0.5 in our experiments.

Finally, we select the object candidates with the highest scores and generate
their bounding boxes as the object proposal result.



Object Proposal via Depth Connectivity Constrained Grouping 7

4 Experiments

4.1 Data set and experiment settings

We validated our method on the largest public RGB-D data set for object
proposal NJU1800, which contains 1,800 RGB-D images with manually labelled
ground truth [13].

All the experiments were conducted on a computer with Intel i5 2.8GHz
CPU and 8GB memory. For all the other methods in comparison, we used their
default settings suggested by the authors.

4.2 Experimental results

We first compare our method with eight object proposal methods on RGB
images, namely binarized normed gradients (BING) [7], edge boxes (EB) [26],
objectness (OBJ) [1], geodesic object proposal (GOP) [10], multiscale combinato-
rial grouping (MCG) [3], selective search (SS) [20], multi-thresholding straddling
expansion of edge boxes (M-EB) and multiscale combinatorial grouping (M-
MCG) [6]. Figure 3 shows the comparison results on recall vs. candidate number
under IoU=0.8, average recall vs. candidate number [8] and recall vs. IoU on the
top 1,000 candidates. It shows that our method outperforms all the methods on
RGB images. It illustrates that our exploitation of depth in object proposal is
effective, because inappropriate usage of depth will not improve object proposal
performance [12].

We further compare our method with three object proposal methods on RGB-
D images, namely adaptive integration of depth and color (AIDC) [23], depth-
aware layered edge (DLE) [12] and elastic edge boxes (EEB) [13]. They can
be treated as the extensions of BING, EB and M-EB by integrating depth,
respectively. To provide more comprehensive evaluation, we adopt two baselines
extended from other two open-source object proposal methods on RGB images,
namely OBJ and M-MCG, by referring to [13], and denote them with OBJ*
and M*-MCG. Figure 4 shows the comparison results under the same criteria to
those in Fig. 3. It shows that our method is superior to other methods on RGB-D
images. Figure 5 shows some examples of object proposal results generated by
different methods on RGB-D images. The best bounding boxes as compared to
the ones in ground truth within the top 1,000 candidates under IoU=0.8 of each
image are denoted with green boxes, and the omitted ones in ground truth are
denoted with red boxes. we can see that our method can propose all the objects
on various images, but other methods fail in some cases.

We also validate the efficiency of our method. Table 1 shows the running
time of our method and other methods on RGB-D images. We can see that the
running time of our method is similar to other grouping based methods with
comparable performance, such as M∗-MCG.
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Fig. 3. Comparison with the state-of-the-art methods on RGB images. (a) Curve of
recall vs. candidate number (IoU = 0.8). (b) Curve of average recall vs. candidate
number. (c) Curve of recall vs. IoU on the top 1,000 candidates.
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Fig. 4. Comparison with the state-of-the-art methods on RGB-D images. (a) Curve
of recall vs. candidate number (IoU = 0.8). (b) Curve of average recall vs. candidate
number. (c) Curve of recall vs. IoU on the top 1,000 candidates.

Table 1. Efficiency evaluation of different methods on RGB-D images.

Method Type Language Time per image (s)

AIDC window C++ 0.08
DLE window C++ & Matlab 4.51
EEB integration C++ & Matlab 22.34
OBJ∗ window C++ & Matlab 4.19

M∗-MCG grouping C++ & Matlab 60.41
Ours grouping C++ & Matlab 67.53

4.3 Discussion

In our experiments, we find some limitations of our method. For instance,
our method may omit some objects in an image containing multiple objects
with complex scene, such as the cups and two children in the top example in
Fig. 6. Moreover, as shown in the bottom example in Fig. 6, our method fail
in providing the accurate bounding boxes when the depth of two aircrafts are
partially inaccurate.

5 Conclusion

In this paper, we proposed an object proposal method on RGB-D images with
the constraint of depth connectivity. Specifically, depth connectivity is used to
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(a) (b) (c) (d) (e) (f )

Fig. 5. Examples of object proposal results using different methods on RGB-D images.
All the green boxes denote the best bounding boxes to the ones in ground truth within
the top 1,000 candidates under IoU=0.8, and the red boxes denote the omitted ones
in ground truth. (a) AIDC. (b) DLE. (c) EEB. (d) OBJ*. (e) M*-MCG. (f) Ours.

(a) (b) (c)

Fig. 6. Examples of our failure results. (a) Color appearance. (b) Depth appearance.
(c) Our results (the green boxes and the red boxes have the same denotation to Fig. 5).

improve the key techniques in grouping based object proposal, including segment
generation, hypothesis expansion and candidate ranking. The proposed method
was validated on the largest RGB-D image data set for object proposal NJU1800 ,
and the experimental results showed that it outperforms the state-of-the-art
methods on both RGB images and RGB-D images.
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