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Abstract—The details of oriented visual stimuli are better 
resolved when they are horizontal or vertical rather than 
oblique. This “oblique effect” has been researched and 
confirmed in numerous research studies, including behavioral 
studies and neurophysiological and neuroimaging findings. 
Although the “oblique effect” has influence in many fields, 
little research integrated it into computational models. In this 
paper, we try to explore this inhomogeneity of visual 
orientation based on Convolutional neural networks (CNNs) in 
image recognition. We validate that visual orientation 
inhomogeneity CNNs can achieve comparable performance 
with higher computational efficiency on various datasets. We 
can also get the conclusion that, compared with the cardinal 
information, oblique information is indeed less useful in 
natural color image recognition. Through the exploration of 
the proposed model on image recognition, we gain more 
understanding of the inhomogeneity of visual orientation. It 
also illuminates a wide range of opportunities for integrating 
the inhomogeneity of visual orientation with other 
computational models.  

Keywords-orientation inhomogeneity; convolutional neural 
networks; image recognition; oblique effect; cognitive modeling 

I.  INTRODUCTION 
The most characteristic finding of the discrimination of 

orientation is a preference for vertical or horizontal 
orientations over obliques. This preference manifests itself in 
adjustment and assessment of stimulus orientation, the 
resolution of targets, learning and discrimination of objects, 

and a wide assortment of other perceptual phenomena [1]. 
This “oblique effect” phenomenon has been documented by 
different research studies. As early as 1893, the experimental 
responses from [2] evidenced marked superiority with 
horizontal and vertical stimuli in the experiments of 
reproducing visually presented lines. Studies of visual acuity 
were also among the first investigations to uncover 
preferences for vertical and horizontal stimuli. Emsley found 
acuity differences among subjects asked to resolve line 
gratings [3]. Furthermore, several studies tried to examine 
the role of stimulus orientation in perceptual grouping [4][5]. 
Their results also suggested that the most facilitating aspect 
of perceptual grouping was the change from horizontal or 
vertical orientations to diagonal orientations [1]. Optical 
illusions are also subject to the oblique effect. This kind of 
illusion is minimal when the lines are in a horizontal or 
vertical position and maximal for obliques’ position [6]. As 
well as adults, children are also susceptible to the oblique 
effect. Bryant tested 5-7-year-olds children on simultaneous 
and successive matching tasks and found successive 
discrimination of mirror-image obliques to be most difficult 
[7]. In addition to humans, species as diverse as octopuses, 
goldfish, rats, cats, and chimpanzees show the oblique effect 
to some degree [8]. 

Neurophysiological research has firmly established the 
presence of cells in the cortex of cat, monkey, and man that 
are selectively sensitive to orientation. Ganglion cells in 
rabbit, pigeon, and goldfish have been found that perform 
similar functions [1]. Neural processing of contours was 
highlighted by the classical research by Hubel and Wiesel 
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which revealed neural units right at the entrance of visual 
signals into the brain that respond preferentially to lines and 
edges [9]. When the distribution of preferred orientation of 
these units was examined, there were fewer in the oblique 
meridians than in the vertical and horizontal [10]. 
Orientation differences also occur in testing the visual brain 
for cell connectivity [11] and with imaging techniques [12]. 

Although edges or contours in our visual environment 
obviously are distributed across the full range of orientations, 
it is possible that our visual system has been biased 
functionally and structurally by a predominance of visible 
information near the cardinal axes [13]. In early studies from 
[14][15], Fourier analysis was used to analyze the natural 
scenes. They found a variety of scenes have anisotropic 
frequency spectra, with more power near the cardinal axes. 
Coppola et al. reported the analysis of many digitized scenes 
using Sobel direction and magnitude filters  [13]. Their 
results showed a prevalence of vertical and horizontal 
orientations in indoor, outdoor, and even entirely natural 
setting. Girshicketal et al. obtained their measurements of 
probability distribution over local orientation from a larger 
database of photographs of scenes [16]. They used a pair of 
rotation-invariant filters to estimate the local image 
gradients. After this stage, they identified strongly oriented 
regions, obtained dominant orientation and calculated the 
histograms of these values. In their results, the estimated 
environmental distribution indicates there existing a 
predominance of cardinal orientation. In 2015, we defined 
the environmental orientation distribution as the probability 
distribution over local orientation with different spatial scale 
[17]. A standard dataset is utilized to statistically analyze the 
orientation distribution on thousands of authentic images 
with eight semantically organized categories. We used 
Canny edge detector [18] to obtain the edge map of every 
image. The local image gradients were calculated based on 
the edge map. Then, the orientation histogram channels were 
created based on the gradient orientation values. The 
resulting estimated environmental distribution indicated a 
predominance of vertical and horizontal orientations in 
various urban and natural scene images. Thus, it has been 
suggested that the prevalence of vertical and horizontal 
orientations in the environment is the underlying cause of the 
anisotropy of orientation discriminability.  

Although the “oblique effect” has an impact on 
psychology, little research integrated this effect into 
computational models. In this paper, we seek to explore this 
inhomogeneity of visual orientation based on CNNs in image 
recognition. As we known, CNNs were inspired by 
biological processes. In this paper, we select them as our 
basic model. Moreover, they have wide applications in 
image and video recognition. 

The remainder of this paper is organized as follows. 
Related work on Convolutional neural networks is reviewed 
in Section II. Visual orientation inhomogeneity based CNNs 
are introduced in Section III. Section IV discusses the 
performance of the proposed techniques in image recognition 
and Section V concludes this paper. 

II. RELATED WORK ON CONVOLUTIONAL NEURAL 
NETWORKS 

In recent years, there’s been a resurgence in the field of 
Artificial Intelligence. This resurgence has been powered in 
no small part by a new trend in AI, especially in machine 
learning, known as “deep Learning”. Different from shallow 
learning models, such as Support vector machine (SVM), 
deep learning allows computational models that are 
composed of multiple processing layers to learn 
representations of data with multiple levels of abstraction 
[19]. They exploit the property that a lot of natural signals 
are compositional hierarchies, that means higher-level 
features can be obtained by composing lower-level ones. In 
images, for example, edges form motifs, motifs assemble 
into parts, and parts form the whole objects. The similar 
phenomenon also happens in speech, text, or other 
multimedia data. Some theoretical analyses from machine 
learning provide support for the argument that deep models 
are more compact and expressive than shallow models in 
representing most learning functions, especially highly 
variable ones [20]. Thus, deep learning methods could be 
used to solve some optimal problems, even possible in some 
traditional applications [21]. 

However, increasing the number of hidden layers leads to 
two known issues: vanishing gradients and overfitting. 
Backpropagation, a well-known computationally efficient 
model for multilayer neural networks, also suffers from the 
problems of insufficient labeled data, high computational 
cost, and poor local optima when working under a deep 
model [22]. To reduce the difficulty, more recent researches 
have been devoted to investigate new learning algorithms for 
deep architectures, such as Deep belief networks (DBN) [23], 
Convolutional neural networks [24][25], Recurrent neural 
networks [26][27], and so on.  

Convolutional neural networks (CNNs) are one type of 
feed-forward artificial neural networks [24][25]. Four key 
ideas are behind CNNs that take advantage of the properties 
of natural signals: local connections, shared weights, pooling 
and the use of many layers. The architecture of the typical 
CNNs can be structured as a series of stages. In their stages, 
the first stages are composed of two types of layers: 
convolutional layer and pooling layer. The role of the 
convolutional layer is to detect local conjunctions of features 
from the previous layer, and the role of the pooling layer is 
to merge semantically similar features into one. In the two or 
three stages of convolution, the non-linearity and pooling are 
stacked, and they are followed by more convolutional and 
fully-connected layers. In the last stage, the backpropagating 
gradients are calculated through Convolutional Neural 
Networks, which is as same as through a regular deep neural 
network, allowing all the weights to be trained. The 
convolutional and pooling layers in CNNs are directly 
inspired by the classic notions of simple cells and complex 
cells in visual neuroscience [28], and the overall architecture 
is reminiscent of the hierarchy in the visual cortex ventral 
pathway [29]. CNNs achieved many practical successes 
during the period when neural networks were out of favour 
and it has recently been widely adopted by the computer-
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vision community, such as face verification [30], image 
segmentation [31], and object recognition [32][33]. 
Additionally, features learned by large networks trained on 
ImageNet have been shown to yield state-of-the-art 
performance across many standard image recognition 
datasets when classified with an SVM, even with no fine-
tuning. A number of works have focused on understanding 
the representation learned by CNNs. Zeiler & Fergus have 
introduced a procedure to visualize what activate each unit 
[34]. Yosinski et al. have used transfer learning to measure 
how generic/specific the learned features are [35]. 
Unfortunately, there is no existing work try to explore the 
effects of the inhomogeneity of visual orientation with 
CNNs. In this paper, we try to investigate the performance of 
the orientation inhomogeneity with CNNs on image 
recognition task. 

III. BASIC IDEA OF VISUAL ORIENTATION 
INHOMOGENEITY BASED CNNS 

Convolutional neural networks combine three 
architectural ideas to ensure some degree of shift, scale, and 
distortion invariance: local receptive fields, shared weights, 
and spatial or temporal sub-sampling [25]. A typical 
convolutional network is shown in Fig. 1.  

The convolutional layer is the core building block of 
convolutional neural networks. The layer’s parameters 
consist of a set of learnable filters (or kernels), which have a 
small receptive field. During the forward pass, each filter is 
convolved across the input volume, computing the dot 
product between the entries of the filter and the input, and 
producing a 2-dimensional activation map of that filter. As a 
result, the network could learn filters that activate when they 
see some specific type of feature at some spatial position in 
the input. Stacking the activation maps for all filters forms 
the output volume of the convolution layer.  

In this paper, by integrating the orientation 
inhomogeneity into our model, we propose a novel algorithm, 
Visual orientation inhomogeneity based CNNs (V-CNNs). In 
standard CNNs, each learnable convolutional kernel is 
convolved across the input volume to extract and process the 
information. And information from all orientations are 
extracted and processed equally. On the contrary, the 
convolution kernels in V-CNNs aim to omit the information 

of the oblique orientation in convolutional stages of the 
standard computation. In Fig. 2, we demonstrate a simple 
implementation of the convolution kernels with the size 5×5 
in different models, including: standard CNNs, Visual 
orientation inhomogeneity based CNNs (V-CNNs), Double 
visual orientation inhomogeneity based CNNs (DV-CNNs), 
and Opposite visual orientation inhomogeneity based CNNs 
(OV-CNNs). The white color indicates the value in the 
corresponding position of the convolution kernels is set to be 
0. 
 

                  
                                   (a)                                             (b) 

                     
                                   (c)                                             (d) 

Figure 2.   The convolution kernels in different models. (a). standard 
CNNs; (b). Visual orientation inhomogeneity based CNNs (V-CNNs); (c). 
Opposite visual orientation inhomogeneity based CNNs (OV-CNNs); (d). 
Double visual orientation inhomogeneity based CNNs (DV-CNNs). The 

white color indicates the value in the corresponding position of the 
convolution kernels is set to be 0. 

In Table 1, we provide the computational complexity 
comparisons of different convolution kernels. In standard 
CNNs, if the size of the convolution kernel is 5×5, for each 
kernel, the number of multiplication operations per image is 
25, and the number of addition operations per image is 24. In 
V-CNNs and DV-CNNs, both of the number of 
multiplication operations and the number of addition 

 
Figure 1.   Typical CNNs architecture. 
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operations decrease. Although the difference of the proposed 
model and the standard CNNs is not large, taking into 
consideration the large number of epochs and the large 
number of images in large-scale image recognition, this 
difference really matters.  

TABLE I.  COMPUTATIONAL COMPLEXITY COMPARISONS OF DIFFERENT 
CONVOLUTION KERNELS WITH THE SIZE 5×5 

 

IV. EXPERIMENTS 

A. Experimental Setting 
In our experiments, we try to investigate the recognition 

performance of the proposed V-CNNs and DV-CNNs, with 
the standard CNNs. And we also conduct comparisons 
experiments with the control model: OV-CNNs, whose 
cardinal feature detectors are omitted. In our experiments, 
CNNs, V-CNNs, DV-CNNs, and OV-CNNs are trained 
using MatConvNet toolbox (version 1.0-beta18) [36] on a 
Tesla K80 GPU. MatConvNet allows fast prototyping of 
typical or new CNN architectures, meanwhile, it supports 
efficient computation on CPU and GPU allowing training 
complex models on large datasets such as ImageNet 
ILSVRC-2012. We follow the general parameter setting in 
MatConvNet, such as the number of layers, the number of 
filters in each layer, the learning rate, and so on.  

Our experiments are evaluated on three datasets, 
including: MNIST, CIFAR-10, and ImageNet Large-Scale 
Visual Recognition Challenge 2012 (ILSVRC-2012). In the 
first experiment, we test the visual orientation inhomogeneity 
on handwritten digits recognition. In the second experiment, 
we do the experiments on natural color image dataset. In the 
third experiment, we extend our comparisons on large-scale 
hierarchical object recognition. 

B. Experiment 1: Visual Orientation Inhomogeneity on 
Handwritten Digits Recognition 
MNIST is a standard database of handwritten digits 

containing a training set of 60,000 examples and a test set of 
10,000 examples with 10 classes [25]. The resolution of 
images is 28 × 28. MNIST is a commonly used standard 
dataset for evaluating the performance of deep learning 
techniques [37]. Sample images in this dataset are shown in 
Fig. 3. The handwritten digits recognition is one basic but 
important task in computer vision. On this dataset, we try to 
test the effect of the inhomogeneity of visual orientation in 
handwritten digits recognition by evaluating the proposed V-
CNNs. In this experiment, we used the MatConvNet library 
[36] and their reference implementation of LeNet [25]. 
 

 
Figure 3.   Sample images in MNIST handwritten digits. 

The handwritten digits recognition experiments were 
done based on CNNs, V-CNNs, and DV-CNNs. Here, V-
CNNs and DV-CNNs are proposed based on the orientation 
inhomogeneity in human vision. In V-CNNs, some 
information from the oblique orientations has been removed 
as Fig. 2(a). In DV-CNNs, double information from the 
oblique orientations has been removed as Fig. 2(d). On the 
contrary, classical CNNs keep extracting and processing the 
information from all orientation equally. The average 
recognition accuracies, standard deviations are given in 
Table 2. “Acc.” stands for average accuracy, and “Std.” 
stands for standard deviation. All the statistical experiments 
on image datasets are repeated for 5 times with randomly 
selected training sets and the average results are reported. 
The results suggest that the number of correct recognition of 
V-CNNs is slightly better than that of standard CNNs, 
although these two models are not significantly different in a 
paired t-test (t(8) = 1.26, p = 0.242). Moreover, if more 
oblique information were sacrificed in the learning procedure 
as DV-CNNs, the recognition performance would decrease a 
little. 

TABLE II.  PERFORMANCE COMPARISON IN HANDWRITTEN DIGITS 
RECOGNITION ON MNIST 

 
 

 
Figure 4.  Convergence curve of training error of CNNs and V-CNNs. 
 
Fig. 4 shows the convergence curve of training error of 

CNNs and V-CNNs. This experiment is conducted on a PC 
with Intel(R) Core(TM) I7-2600 3.4GHz CPU and 8.0GB 

Algorithms CNNs V-CNNs DV-CNNs 
Number of multiplication 

operations per image 
25 21 17 

Number of addition 
operations per image 24 20 16 

Algorithms CNNs V-CNNs DV-CNNs 

Acc. (%) 99.09 99.11 99.07 
Std. (%) 0.003 0.004 0.005 
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RAM. We could find that the shapes of their curves are very 
similar with each other. It means sacrificing the oblique 
information to a certain degree will not delay the learning 
procedure of CNNs. 

C. Experiment 2: Visual Orientation Inhomogeneity on 
Natural Color Image Recognition 
The CIFAR-10 dataset consists of 60,000 images with 

the resolution of 32×32 from 10 classes (6,000 images per 
class) [38]. There are 50,000 training images and 10,000 test 
images. This dataset includes ten categories, namely 
“airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, 
“frog”, “horse”, “ship”, and “truck”. Sample images of each 
category are shown in Fig. 5. The CIFAR-10 images are 
highly varied, and there is no standard viewpoint or scale at 
which the objects appear. Moreover, CIFAR-10 is also a 
commonly used standard dataset for evaluating the 
performance of deep learning algorithms [37][39]. In this 
experiment, we used the MatConvNet library [36] and their 
reference implementation of LeNet [25]. 

 
 

 
 

Figure 5.   Sample images in CIFAR-10 dataset. 

 
In this experiment, we explore the performance of CNNs, 

V-CNNs, DV-CNNs, and OV-CNNs on natural color image 
recognition. Here, V-CNNs and DV-CNNs are proposed 
based on the orientation inhomogeneity in human visual 
perception as Fig. 2(b) and Fig. 2(d). On the contrary, in OV-
CNNs, information from the cardinal orientations has been 
removed as Fig. 2(c). 

TABLE III.  PERFORMANCE COMPARISON IN HANDWRITTEN DIGITS 
RECOGNITION ON CIFAR-10 

 
The average recognition accuracies, standard deviations 

are given in Table 3. “Acc.” stands for average accuracy, and 
“Std.” stands for standard deviation. All the statistical 
experiments on image datasets are repeated for 5 times with 
randomly selected training sets and the average results are 
reported. From this table, we could find standard CNNs 
achieve best accuracy. And the performance of V-CNNs is 

better than DV-CNNs and OV-CNNs. CNNs and V-CNNs 
are significantly different in a paired t-test (t(8) = 6.52, p < 
0.01). It means in a complex task environment, such as 
natural color image recognition, the oblique information also 
plays some roles. V-CNNs and DV-CNNs are significantly 
different in a paired t-test (t(8) = 3.47, p < 0.01). And DV-
CNNs and OV-CNNs are not significantly different in a 
paired t-test (t(8) = 0.90, p < 0.392). It means compared with 
the cardinal information, in natural color image recognition, 
oblique information is indeed less useful. 

D. Experiment 3: Visual Orientation Inhomogeneity on 
Large-Scale Hierarchical Object Recognition 
ImageNet is a dataset of over 15 million labeled high-

resolution images belonging to roughly 22,000 categories 
[40]. The images from ImageNet were collected from the 
web and labeled by human labelers using Amazon’s 
Mechanical Turk crowd-sourcing tool. In the experiment, we 
use the dataset of the ImageNet Large-Scale Visual 
Recognition Challenge 2012 (ILSVRC-2012).  ILSVRC-
2012 is a subset of ImageNet with about a million images 
that contained 1,000 different categories. There are roughly 
1.2 million training images, 50,000 validation images, and 
150,000 testing images. Sample images in this dataset are 
shown in Fig. 6. What’s more, ImageNet is a well-known 
dataset to evaluate the capability of a deep learning 
algorithm [41] [42]. In this experiment, we use the 
MatConvNet toolbox [36] and their reference 
implementation of AlexNet [41]. 

 

 
 

Figure 6. Sample images in ILSVRC-2012 image dataset. 
 

We construct the proposed V-CNN model by referring to 
the well-known AlexNet architecture. In AlexNet, the first 
convolutional layer filters the 227×227×3-dimensional input 
image with 96 kernels of size 11×11×3 with a stride of 4 
pixels. The second convolutional layer takes the output of the 
first convolutional layer as input and filters it with 256 
kernels of size 5×5×48. The third convolutional layer has 
384 kernels of size 3×3×256 connected to the outputs of the 
second convolutional layer. The fourth convolutional layer 
has 384 kernels of size 3×3×192. The fifth convolutional 

Algorithms CNNs V-CNNs DV-CNNs OV-CNNs 

Acc. (%) 76.49 75.32 74.78 74.66 

Std. (%) 0.32 0.24 0.25 0.15 
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layer has 256 kernels of size 3×3×192. In the end, the fully-
connected layer have 4096 neurons each. In AlexNet, each 
11×11×3 learnable convolutional kernel is convolved across 
the input image to extract and process the information. And 
information from all orientations are extracted and processed 
equally. On the contrary, the convolution kernels in the 
proposed V-CNNs aim to only extract and process the 
information from cardinal orientation. Thus, the values of the 
corresponding position from oblique orientation in the 
convolution kernels are set to be 0. As the first convolution 
kernel in AlexNet is of size 11×11, it is almost twice the size 
of 5×5. Similarly as the convolution kernel shown in Fig. 
2(b), some information from the oblique orientations in each 
corner of the kernel has been removed while they are size of 
2×2 instead of 1×1. The convolution kernels in V-CNNs 
used for large-scale hierarchical object recognition are 
shown in Fig. 7. 

 

 
Figure 7. The convolution kernels of V-CNNs for large-scale hierarchical 

object recognition. The white color indicates the value in the corresponding 
position of the convolution kernels is set to be 0. 

In this experiment, all the statistical experiments on 
image datasets are repeated for 5 times with randomly 
selected training sets and the average results across the 25 
epochs are reported. The average recognition accuracy of 
standard CNNs is 55.40% and the value of V-CNNs is 
51.43%. Moreover, the standard deviations of standard 
CNNs and V-CNNs are 0.21% and 0.11% respectively. 
Therefore, we could find in this case, the recognition 
performance of CNNs is better than the proposed V-CNN. 
These results indicate that in a large-scale recognition task, 
the oblique information is also important. 

V. CONCLUSIONS AND FUTURE WORK 
Motivated by the insight of orientation inhomogeneity in 

human vision, we proposed novel neural networks, V-CNNs, 
for image recognition. In standard CNNs, the convolutional 
layers extract and process the information from all 
orientation equally. On the contrary, V-CNNs omit the 
information of the oblique orientation in convolutional stages 
of the standard computation.  

In this paper, we evaluate the proposed model V-CNNs 
on three datasets, including: MNIST, CIFAR-10, and 
ImageNet Large-Scale Visual Recognition Challenge 2012 

(ILSVRC-2012). In the first experiment, we test the visual 
orientation inhomogeneity on handwritten digits recognition. 
In the second experiment, we do the experiments on natural 
color image dataset. In the third experiment, we extend our 
comparisons on large-scale hierarchical object recognition. 
In our experiments, V-CNNs achieve comparable 
performance with higher computational efficiency in 
recognition task on MNIST and CIFAR-10. Based on the 
comparisons between the proposed model V-CNNs, DV-
CNNs and the control model OV-CNNs, we could get the 
conclusion that, compared with the cardinal information, in 
natural color image recognition, oblique information is 
indeed less useful. In the recognition task on the large-scale 
dataset ILSVRC-2012 with hierarchical objects, the 
performance of CNNs is better than the proposed V-CNN, 
and the difference is not big. This result indicates that in a 
large-scale recognition task, the oblique information has 
some effects on the recognition performance.  

We have already shown that the proposed algorithm is 
applicable to image recognition task in our experiments. 
Actually, the proposed algorithm requires smaller storage 
capacity and better efficiency, which makes it potentially 
suitable for industry application where time or space 
complexity is more important, such as the image search 
engines.  

We can observe that the recognition accuracy of the 
proposed method is relatively lower than the original method 
in large-scale hierarchical object recognition task. We infer it 
is because there exists differences of the orientation 
distribution in different object category. Hence, how to 
improve the adaptability of the proposed method by 
automatically adjusting the weights of the oblique orientation 
according to the orientation distribution of different 
categories is the first future work we need to consider. 
Another meaningful future work is to improve the efficiency 
of the algorithm in order to make sure the current algorithm 
can be transplanted on the portable devices. Last but not 
least, we would like to integrate the inhomogeneity of visual 
orientation into other local classical and the state-of-the-art 
algorithms, such as ResNet [43], and apply them in other 
applications. 
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