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Abstract. Remote sensing images or images collected by unmanned
aerial vehicles in the hazy weather are easily interfered by scattering
effect generated by atmospheric particulate matter. The terrible inter-
ference will not only lead to the images quality seriously degraded, but
also result in a bad effect on the process of images feature extraction and
images feature matching. In this paper, by proposing an effective adap-
tive dehaze method, we compare the statistical results of feature detec-
tion and matching based on Scale-invariant feature transform (SIFT)
detector and descriptor before and after haze removal. And we also pro-
vide the comparisons of image stitching task. The experimental results
show that, after the haze removal is implemented on hazy images, more
SIFT feature keypoints and SIFT matching keypoints will be extracted,
which is also beneficial to images stitching. Moreover, the proposed adap-
tive method performs better than the original dehaze method.
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1 Introduction

The digital image stitching technology has become a hot research field nowadays.
It deals with remote sensing images collected by satellites or planes as well
as aerial images collected by UAV (unmanned aerial vehicles). Aerial image
processing [1,2] is the key process in image stitching technology. At present, the
image registration method based on the extracted image features is the main
tendency in the field of image stitching. The core of the method is to find all
of the matching feature point pairs by measuring similarity between each of the
two images. Therefore, how to effectively extract more distinguished features
from aerial images is very important.

Although there are not many existing work try to explore the feature detec-
tion, extraction and matching in aerial images, lots of algorithms are proposed
to detect and extract features from other types of natural images, such as Harris
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algorithm [3], Canny algorithm, SIFT algorithm [9,10], S-SIFT algorithm [11],
V-SIFT algorithm [12] and so on. Among them, the SIFT algorithm has the
advantage of maintaining invariance for the cases of image scaling, translation,
rotation and even affine transformation. Unfortunately, aerial images have obvi-
ous different characters and properties with other types of natural images. The
scattering effect generated by the atmospheric particulate matter will easily
interfere with the fidelity and contrast of aerial images, leading to the loss or the
degradation of the features from aerial images.

In view of these limitations, in recent years, many haze removal models and
techniques are proposed to alleviate the influences from haze. Tan [5] removes the
haze by maximizing the local contrast of the restored images. Fatal [6] estimates
the albedo of the scene and then infers the medium transmission. Besides, in
2009, He et al. [7,8] put forward a new kind of prior rule called dark channel prior,
which will directly evaluate the transmission information of light in the haze
and then remove the haze from a single input image. This effective method of
removing haze can both maximally retain the feature information of the original
image and adjust the overall color brightness of the image and keep the color
unchanged. Unfortunately, their methods do not consider the differences in image
properties between different image regions.

In this paper, we propose a novel adaptive dehaze method to adaptively
estimate the optimal patch size in different regions of aerial images and remove
the image haze under this consideration. We are the first to use a series of
experiments to evaluate the proposed image dehaze method on aerial images. In
experiments, we collect two aerial image datasets, including the images obtained
by unmanned aerial vehicle, and the satellite images from Google Earth [19]. In
each dataset, by using the proposed adaptive dehaze method, we obtain better
performance on feature detection, image matching, and image stitching.

2 Adaptive Dehaze Method

2.1 Image Haze Removal

The key part of the famous haze removal method proposed by He et al. is they
propose a new prior dark channel prior [7,8], to estimate the transmission directly
from a hazy image. Simplify, the dark channel prior means that in most of the non-
sky patches, at least one color channel has very low intensity at some pixels. In
other words, the minimum intensity in such a patch should have a very low value.
And due to the additive airlight, a hazy image is brighter than its haze-free version
in where the transmission is low. So the dark channel of these images will have
higher intensity in regions with denser haze. According to haze removal approach
proposed by He et al., a haze-free image can be recovered from a widely used model:

J(x) =
I(x) − A

max(t(x), t0)
+ A (1)

where the scene radiance J(x) is a haze-free image, I(x) is a haze image, A is the
global atmospheric light, t is the medium transmission describing the portion of
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the light that is not scattered and reaches the camera and t0 is a lower bound
to restrict the transmission t(x). Then, we can estimate the transmission t(x)
simply by

t(x) = 1 − ω min
y∈Ω(x)

(min
c

Ic(y)
Ac

) (2)

where Ic is a color channel of I, ω is a constant parameter to keep a very small
amount of haze for the distant objects on images, and Ω(x) is a local patch
centered at x. A key parameter in haze removal algorithm is the patch size xn,
which is the length of Ω(x) in Eq. (2). In this famous haze removal algorithm,
the patch size is always fixed to be 15. In our paper, we propose a novel method
to adaptively remove the haze effects in different image conditions.

2.2 Image Segmentation Using Kernel Graph Cuts

In our preliminary experiments, we already found that the effects of image haze
removal are different in sky and non-sky regions. Therefore, in order to obtain
the optimal patch size for the sky and non-sky regions respectively, we segment
the hazy images into sky and non-sky regions using Kernel Graph Cuts. Based
on Boykov’s model [13], Salah [14] proposed a fully automated kernel graph
cuts model, which can divide a single image into several regions unsupervisedly.
In Salah’s algorithm [14], the energy equation of the simplified kernel-induced
distance segmentation model is defined as follows,

E({μl}, δ) =
∑

l∈L

∑

p∈Rl

JK(Ip, μl) + α
∑

{p,q}∈D

r(δ(p), δ(q)) (3)

where JK is the kernel function, l ∈ L is the number of the regions to be divided,
L is the total number of regions and μl is the parameter of the unsupervised
multi-parameter Graph cuts algorithm. δ is the penalty for each pixel marked as
foreground or background. l ∈ Rl is a pixel that belongs to a segmented region.
r(δ(p), δ(q)) is the smooth term in neighborhood D. The first term on the right
side of the Eq. (3) is the data item, the second term is the smoothing term. α is
the positive coefficient, which is used to adjust the weight of the data item and
the smoothing item.

Fig. 1. Illustration of one-dimensional discrete random walk. Initially a particle is
placed at xn. The black arrows marked “left” and “right” indicate two different jumping
directions.
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2.3 Adaptively Obtain Optimal Patch Size Using Random Walk

After the image segmentation, we could use brute force method to obtain the
optimal patch size of the sky region and the non-sky region individually on the
training images. At the optimal patch size, we believe that both sky regions and
non-sky regions will be extracted more keypoints after haze removal than fixed
patch size. However, using exhaustive method to find the optimal patch size is
a time-consuming work. Therefore, in order to make our approach efficiently,
we are supposed to obtain optimal patch size effectively. Based on previous
research, random walks are stochastic processes formed by successive summation
of independent, identically distributed random variables and are one of the most
studied topics in probability theory [15]. So, in our method, we try to find out
the optimal patch size using the random walk algorithm. More specifically, we
regard the procedure of searching for optimal patch size as a one-dimensional
discrete random walk problem [16].

Algorithm 1. Obtain Optimal Patch Size using Random Walk
Input:

A training set with M segmented images.
Integer T specifying number of iteration.
pleft, pright specifying probability of turning forwards left or right direction respec-
tively.

Initialize:
times(xn) = 0 for all xn ∈ (1, N).
pleft= pright=0.5.
Randomly generated initial patch size xn.

Do for t = 1, 2, ..., T :

1. Calculate the average number Yn : Yn =
∑M

i=1 ϕn(i)/M , where ϕn(i) is the number
of detected keypoints of the i-th segmented image when the value of patch size is
xn.

2. Obtain next patch size: xnext =

{
xn + Δx, when it jumps to the right

xn − Δx, when it jumps to the left

where Δx is jumping step (Δx ∈ (1, N)). The jumping direction is purely depended
on pleft and pright.

3. Update current average number: Ycurrent = max(Ycurrent, Ynext).
4. Record last jumping direction and define jumping probability: pleft ← p and

pright ← 1 − pleft . And the probability p is defined as:

p =

{
k, last direction is left

1 − k, last direction is right
(0.5 < k < 1)

5. Count jumping times times(xn) when it jumps to patch size xn : times(xn) =
times(xn) + 1.

Output: The optimal patch size xoptimal where times(xoptical) = max(times(xn)).
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As shown in Fig. 1, a particle on a one-dimensional lattice jumps from one
site to an adjacent site at random with a probability pright to the right and pleft
to the left. The algorithm to obtain optimal patch size using discrete random
walk is shown in Algorithm 1. In Algorithm 1, the particle jumps in the same
direction as previous jump with the probability k (0.5 < k < 1) and the change
the jump direction with the probability 1 − k. This probability does not create
preferred direction.

3 Experiments

3.1 Experimental Setting

In this part, to validate the performance of our proposed method, experiments
are carried out on two sets of hazy images. The first dataset UAV is collected by
our group. This data set includes 55 images obtained by the unmanned aerial
vehicles. The original resolution of these images is 4000 × 3000. The second
dataset GE is collected from Google Earth [19], which provides us a series of
satellite images from all over the world. This dataset has 100 images totally,
is collected from four different cities that were seriously suffering from heavy
haze. In addition, the resolution of the images is 800 × 500 and the overlap part
between images pairs is between 20% and 50%. In Table 1, we demonstrate some
basic information about these four different cities.

Table 1. Specific information about four different cities in the second dataset GE

City Longitude Latitude Date

Beijing 16◦23′22.15′′E 39◦55′22.88′′N Oct 18th, 2014

Guangzhou 113◦19′12.16′′E 23◦06′52.54′′N Oct 12th, 2015

New Delhi 78◦02′32.15′′E 27◦10′30.01′′N Mar 15th, 2014

Karachi 67◦10′21.2′′E 24◦53′48.63′′N Apr 6th, 2015

In each dataset, we conduct the following three experiments: keypoint detec-
tion, keypoint matching and image stitching [17]. We use the OpenCV toolbox
provided by Rob Hess from Oregon State University [18]. All the experiments
were carried out on an Intel(R) Core(TM) 2.6 GHz PC running under Windows
10 operating system with 16.0 GB RAM.

3.2 Experiments on GE Dataset

In the experiments on GE dataset, we keep the original resolution 800 × 500 of
images to test the performance of keypoint detection and matching. Firstly, we
test the keypoint detection performance based on SIFT detector on 100 collected
images. In Table 2, we show the number of keypoints detected by SIFT detector
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before and after haze removal. From Table 2, it is obviously that the number
of keypoints increases dramatically by 262.04% on average. In Fig. 2, we show
this improvement in keypoint detection task. Apparently, more keypoints will
be detected after haze removal, especially those aerial images with heavy haze.

Table 2. The average number of detected keypoints before and after haze removal

Before haze removal After haze removal Increment

980 3548 262.04%

In this part, we combine 100 images into 160 pairs. Then, we evaluate the
keypoint matching performance based on SIFT descriptors in 160 image pairs.
In Table 3, we provide the number of matching keypoints of SIFT descriptors in
the case of before and after haze removal. From this table, the average number
of matching keypoints will increase about 177.89% without RANSAC [4]. With
RANSAC, this average number increases about 178.20%. In Fig. 3, we demon-
strate a group of example images of the keypoint matching task.

Table 3. Average number of matched keypoints based on SIFT descriptors before and
after haze removal

Before haze removal After haze removal Increment

Without RANSAC 305 848 177.89%

With RANSAC 292 812 178.20%

Fig. 2. A group of example images in the keypoint detection task. (a) Before the haze
removal, 35 keypoints are detected. (b) After the haze removal, 2048 keypoints are
detected.
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Fig. 3. A group of example images in the keypoint matching task (with RANSAC). (a)
Before the haze removal, 19 keypoint pairs are matched. (b) After the haze removal,
744 keypoint pairs are matched.

Fig. 4. A group of example images in the image stitching task. (a) is the result before
haze removal, and (b) is the result after haze removal.

In this part, we use 25 images to do the image stitching task. And the reso-
lution of each image is 400 × 250. In Fig. 4, we demonstrate the result of image
stitching task on two cases. Compared with the results without haze removal,
our methods based on haze removal helps us to obtain better stitching results.

3.3 Experiments on UAV Dataset

In the experiments on UAV dataset, we down-sampled the images to 1000× 750
to test the performance of keypoint detection and matching on lower resolution
image. In this part, we firstly evaluate the keypoint detection performance based
on SIFT detector on 55 collected images. In Table 4, we provide the number of
keypoints detected by SIFT detector before and after haze removal. From this
table, we could find the number of detected keypoints increase about 10.25% on
average. This improvement shows the haze removal is effective to reduce the bad
effect of haze in the keypoint detection task.

Table 4. The average number of detected keypoints before and after haze removal

Before haze removal After haze removal Increment

4138 4562 10.25%
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In Fig. 5, we demonstrate a group of example images in the keypoint detection
task. From the comparisons of this group, we can easily find that most of newly
detected keypoints are located in the regions that are badly influenced by haze.
In hazy image, the buildings in a distant view (shown in the black box) cannot be
distinguished clearly. And it also has a bad influence on the keypoint detection.
After we utilize the algorithm of haze removal, more keypoints could be detected
in these regions.

Fig. 5. A group of example images in the keypoint detection task. (a) Before the haze
removal, 2773 keypoints are detected. (b) After the haze removal, 3453 keypoints are
detected.

Table 5. Average number of matched keypoints based on SIFT descriptors before and
after haze removal

Before haze removal After haze removal Increment

Without RANSAC 447 464 3.80%

With RANSAC 261 275 5.36%

Based on the geographic position of the collected images, we divide the col-
lected images into seven groups. In the image matching experiment, we could
combine 55 images into 167 aerial image pairs. In each pair, the overlap part is
not less than 20%. In this part, we evaluate the keypoint matching performance
based on SIFT descriptors in 167 pairs. In Table 5, we provide the number of
matching keypoints of SIFT descriptors in the case of before and after haze
removal. From this table, we could find the average number of matched key-
points will increase about 3.80% without RANSAC method. With RANSAC,
this average number increases about 5.36%. This improvement also evidences
that the haze removal is effective to reduce the bad influence of haze in the task
of keypoint matching.
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Fig. 6. A group of example images in the keypoint matching task (with RANSAC). (a)
Before the haze removal, 147 keypoint pairs are matched. (b) After the haze removal,
179 keypoint pairs are matched.

Fig. 7. A group of example images in the image stitching task. (a) is the result before
haze removal, and (b) is the result after haze removal.

In Fig. 6, we demonstrate a group of example images of the keypoint match-
ing task. Similar with our previous results in the keypoint detection task, after
the haze removal, we could obtain more matched keypoints, especially for the
buildings in a distant review. These results evidence the effectiveness of the
algorithms for haze removal in hazy aerial images.

Figure 7 shows the results of image stitching task on one sample image. We
use four images to do image stitching task, the resolution of each image is 200×
150. Compared with the results without haze removal, our method based on haze
removal helps us to obtain better mosaicking results.

3.4 Adaptive Haze Removal

In this section, we apply our proposed method to obtain optimal patch size for
both sky region and non-sky region individually. And we will evaluate the effec-
tiveness of our method as well. Firstly, we divide UAV dataset into two subsets
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which are named as UAV-Training and UAV-Testing respectively. The UAV-
Training subset, as a training set, contains 35 images. And UAV-Testing subset,
as a testing set, contains 20 images. Secondly, to obtain the optimal patch size, we
conduct the training on the images of UAV-Training using Algorithm1 described
in Sect. 2.3. Thirdly, to evaluate the effectiveness of our proposed method, we
test the learnt model on UAV-Testing. Besides, all images in UAV-Training and
UAV-Testing are down-sampled to 1000 × 750.

We use our adaptive method to obtain the optimal patch size for sky and non-
sky region. In image segmentation, to segment a single image into two consecutive
regions, the parameter L in Eq. (3) is set to 2 and the parameter α in Eq. (3)
is set to 10. In random walk method, the step size Δx is 2, the maximum patch
size N is 100, and the iteration times T is set to be 100. Besides, the value
of probability k is set to 0.9. In Fig. 8, we could obtain the optimal patch size
for sky region is 34 and the optimal patch size for non-sky region 40. These
results obtained by our adaptive method are also consistent with the results of
the exhaustive method.

Fig. 8. (a) The obtained candidate optimal patch sizes xn and their corresponding
average numbers Yn of detected keypoints on the non-sky region. (b) The obtained can-
didate optimal patch sizes xn and their corresponding average numbers Yn of detected
keypoints on the sky region.

In this part, we test our adaptive model on UAV-Testing subset as well as
GE dataset. The optimal patch size obtained by our adaptive model, for non-sky
region is 40 and the optimal patch size for sky region is 34. As we known, in He’s
method, the patch size is fixed to be 15 [7,8] for all images or regions. In Table 6,
we provide the results of keypoint detection and matching (with RANSAC) for
different methods, including: the method without haze removal (without haze
removal), the proposed method based on fixed patch size (fixed method), and
the proposed adaptive method (adaptive method). Based on these results, we
could find our adaptive method performs better than others.
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Table 6. Comparisons among methods of without haze removal, fixed method and
adaptive method.

UAV-testing subset

Without haze removal Fixed method Adaptive method

AVE KP 4229 4611 4765

AVE KPM 258 277 282

GE dataset

Without haze removal Fixed Method Adaptive method

AVE KP 980 3548 3738

AVE KPM 292 812 844

Note: “AVE KP” and “AVE KPM” are respectively the average num-
bers of detected keypoints and matched keypoints

4 Conclusion

Images of outdoor scenes are usually degraded by the haze in the atmosphere.
This kind of degraded images loses the contrast and color, which is possible to
have a bad effect of detecting, describing, and matching image local features,
or some related image applications. In this paper, we try to explore the per-
formance based on haze removal technique using dark channel prior for aerial
image obtained by the unmanned aerial vehicle. In our paper, we propose a novel
method to adaptively remove the haze effects in different image conditions. We
did experiments on two self-constructed datasets based on scale-invariant feature
transform for keypoints detection, keypoints matching, and image stitching. Our
results evidence that the haze removal is effective to decrease the bad effect of
haze in these tasks. The adaptive method also demonstrates better performance
than fixed one. Future work will be explored from two aspects. The first direc-
tion is to test the performance of other local feature detectors and descriptors.
The second direction is to propose new real-time haze removal models for aerial
images obtained by the unmanned aerial vehicles.
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