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Water Reflection Recognition Based on Motion
Blur Invariant Moments in Curvelet Space

Sheng-Hua Zhong, Yan Liu, Yang Liu, and Chang-Sheng Li

Abstract— Water reflection, a typical imperfect reflection sym-
metry problem, plays an important role in image content analysis.
Existing techniques of symmetry recognition, however, cannot
recognize water reflection images correctly because of the com-
plex and various distortions caused by the water wave. Hence, we
propose a novel water reflection recognition technique to solve the
problem. First, we construct a novel feature space composed of
motion blur invariant moments in low-frequency curvelet space
and of curvelet coefficients in high-frequency curvelet space.
Second, we propose an efficient algorithm including two sub-
algorithms: low-frequency reflection cost minimization and high-
frequency curvelet coefficients discrimination to classify water
reflection images and to determine the reflection axis. Through
experimenting on authentic images in a series of tasks, the
proposed techniques prove effective and reliable in classifying
water reflection images and detecting the reflection axis, as well
as in retrieving images with water reflection.

Index Terms— Water reflection, imperfect symmetry, motion
blur, invariant moments, reflection axis detection.

I. INTRODUCTION

REFLECTION happens between two different medias.
The direction of a wavefront at the interface changes

so that the wavefront returns into the medium from which it
is originated. In natural image analysis, water reflection plays
an important role.

First, water reflection itself is an exciting natural landscape
that attracts artists and photographers, so images with water
reflection should be considered as one important category of
natural images. Experiments from psychology reveal that sub-
jects give favorable ratings to scenes with reflective water [1].
Many artists and photographers prefer works of water reflec-
tion image, e.g., “The Houses of Parliament, Sunset” which
was painted by Claude Monet.

Second, the awareness of the existence of water reflection
will greatly influence further analysis of an image, such as
image segmentation and object recognition. Fig. 1(a) is an
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Fig. 1. Example of the influence from water reflection to image segmentation
and object recognition by color histogram. (a) An example image with
water reflection. (b) Desired segmentation result of the image. (c) Actual
segmentation using existing algorithms. (d) Color histogram of the mountain.
(e) Color histogram of the mountain and the reflection.

image with water reflection and the correct segmentation result
is shown in Fig. 1(b). However, most existing segmentation
algorithms, such as the state-of-the-art algorithms: graph-based
technique, will consider the mountain and its reflection as
one segment as shown in Fig. 1(c), if the existence of water
reflection is not known prior to the analysis. As a result, the
object mountain is not properly recognized due to the wrong
segmentation. Obviously, the shape information in Fig. 1(c)
will be helpless in detecting the mountain. Fig. 1(d) is the
color histogram of the mountain part in Fig. 1(a), which is
quite different from that of the combination of the mountain
and the reflection as shown in Fig. 1(e). It is obviously that
consider the object and the reflection as a whole will distort
the color feature for recognition.

Third, water reflection is a special case of imperfect reflec-
tion symmetry. Symmetry is an essential and ubiquitous con-
cept in nature, science, and art [2]. Issues relating to symmetry
detection and recognition have attracted extensive attention in
numerous fields including visual perception, computer vision,
robotics, and computational geometry. In philosophy, symme-
try is considered as a pre-attentive feature. This pre-attentive
feature is useful to enhance recognition and reconstruction
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Fig. 2. Examples of imperfect symmetry images. (a) is skewed symmetry.
(b) is curved glide-reflection symmetry.

of shapes and objects [3]. Reflection symmetry is one of
the common basic symmetries [4], in which one half of the
object is indistinguishable from its mirror transformed image
of the other. Reflection symmetry has been studied in many
different fields for various applications from face analysis [5],
vehicle detection [6] to medical image analysis [7]. Since the
restriction to exact symmetries limits the use of these methods
for real-world objects, more efforts have been focused on
the imperfect symmetry [8], [9]. In water reflection images,
the complexity of water part makes it impossible to keep
the consistency between the object part and reflection part
perfectly. Compared with other imperfect symmetry, such as
skewed symmetry and curved glide-reflection symmetry in
Fig. 2, water reflection has seldom been studied although it
greatly influences the performance of natural image analysis.
Moreover, some peculiar symmetry characters of water reflec-
tion make it worthy further exploring.

Although water reflection has great influence in many image
processing tasks, currently, little research studies the water
reflection images in view of vision [10]. To our knowledge, no
effort has been made to address the classification, recognition
and detection of water reflection images. Only one study has
been carried out on detecting the water reflection axis in
water reflection image [11]. The flip invariant shape detector
utilized in [11] relies on the complete and distinct shape
of water reflection part, which cannot be easily satisfied as
water reflection is a complex phenomenon. For example, in
Fig. 3(a) and (b), the snow mountain and trees are partially
reflected because the ice above the water covers some area
of the lake. Therefore, the method proposed in [11] cannot
be successfully applied to many images containing nature
water reflection. A short version of our preliminary work was
published in [12] based on motion blur invariant moments. The
preliminary work demonstrates good performance on water
reflection recognition and reflection axis detection. But it has
the limitation of distinguishing water reflection images from
other imperfect symmetry images.

This paper formulates the water reflection recognition as
a special case of imperfect reflection symmetry problem.
To address the special characteristics of water wave, we
construct a novel feature space that is composed of motion
blur invariant moments in low-frequency Curvelet space and
of Curvelet coefficients in high-frequency Curvelet space. With
the help of moment invariants in low-frequency band, we could
distinguish the imperfect symmetry images from other images.
Utilizing Curvelet coefficients, water reflection images could
be distinguished from other imperfect symmetry images.

Fig. 3. Examples of images containing water reflections of (a) incomplete
and (b) indistinct shapes.

Fig. 4. Feature distortion in water reflection images. (a) and (c) show the
examples of water reflection images. (b) is the color histogram of object part
and water reflection part in (a). (d) shows the texture features in the scene
part and water reflection part of (a).

Based on the novel feature space, we propose an efficient
algorithm including two sub-algorithms: Low-frequency
Reflection Cost Minimization (LRCM) and High-frequency
Curvelet Coefficients Discrimination (HCCD). This algorithm
is effective and reliable to classify water reflection images
from other images and to determine the reflection axis.
Moreover, this algorithm has lower computational complexity
than exhaust algorithm.

The rest of the paper is organized as follows. Section II
discusses the limitations of existing feature space used in
symmetry detection and recognition tasks. Then, we propose a
new feature space based on the characteristics of water waves.
Section III provides an efficient solution to solve the problem
of classification and recognition of water reflection images.
Section IV reports the experiments on authentic datasets.
Finally, the paper draws on conclusion in Section V.

II. FEATURE SPACE IN WATER REFLECTION RECOGNITION

The key to address the difficulty in water reflection recogni-
tion is to find out the effective and robust feature descriptors.
First, let us observe the distortion due to the water reflection in
the most commonly used feature space. Fig. 4(a) and Fig. 4(b)
demonstrate the color distortion of the forest after reflection.
Obviously, much of the red information is lost. In Fig. 4(d),
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Fig. 5. An example of features from Fourier domain based on the image (a).
(b) and (d) show the Fourier transform with real reflection axis. (c) and (e)
show the Fourier transform with fake reflection axis.

three most important Tamura texture features from the scene
part and water reflection part of Fig. 4(c) are compared,
which are most popular features selected by psychological
experiments [13]. There exist great differences of contrast and
directionality between the original one and its reflection.

Therefore, in water reflection images, the distortion in
feature space is widespread To address the difficulty of water
reflection recognition, we first review the limitations of using
the existing features in symmetry detection and recognition for
water reflection tasks. Then we analyze the distortion caused
by motion blur of the water part in feature space. Third, we
propose a novel feature space called Invariant Moment &
Curvelet Coefficient feature space (IMCC).

A. Limitation of Existing Feature Space for Water Reflection
Recognition

Based on the nature of the features extracted from images,
the existing algorithms for reflection symmetry detection
and recognition can be roughly classified into two general
approaches [14], namely, the global approaches and the local
approaches.

In global approaches, features from Fourier domain are the
most commonly used for global approach of reflection sym-
metry detection and recognition. For example, Lucchese [15]
proposed an elegant approach to analyze the angular properties
of an image in Fourier domain. Derrode et al. [16] analyzed the
symmetries of real objects by computing the Analytic Fourier-
Mellin transform (AFMT). Their methods are based on the
idea that Fourier transform preserves the symmetry of images
in the Fourier domain. Let I (x), x = [x y]T ∈ R

2 denote
the scalar image of 2-D pattern. In [15], Lucchese proved
that if an image having reflection symmetry with respect
to the reflection axis y = x × tan α, its Fourier transform
I (ω), ω ∈ R

2 has the same reflection symmetry with respect to
the line ωy = ωx × tan α. The difference between the original
one and the reflection one will be much smaller than the
difference between other parts. But due to the characteristics
of the water part, this conclusion is not always true. Fig. 5(a)
shows an example image with water reflection. Fig. 5(b) is the
image with the correct reflection axis. We calculate the Fourier
transform with this reflection axis. Based on Fig. 5(d) which

Fig. 6. An example of SIFT saliency points detection and matching.
(a) is the desired result (b) is the real result of SIFT descriptor detection
and matching.

is the Fourier transform I (ω) results of object part and water
reflection part, we find the I (ω) does not have the reflection
symmetry as expected. The average difference of object part
and water reflection part is much larger than fake symmetry
axis marked in Fig. 5(c).

Because the use of local features is among the corner stones
of modern computer vision, recent work starts emphasizing the
use of local image features. The representative one is scale-
invariant feature transform (SIFT) descriptor. Loy et al. [17]
chose SIFT detection points as interesting salient points and
took advantage of pairwise matching of their SIFT descriptors
to detect the axis of symmetry. Some other existing work
focused on the shape characteristics of symmetry [18]. For
example, local invariants were computed as single points on
the curves [19], [20] or statistically compare pairs of contour
points [21], [22].

For local approaches of reflection symmetry detection and
recognition, SIFT descriptor is the most representative feature.
As shown in Fig. 6(a), the desired result is that the SIFT
saliency points are matched in pairs between the object and
its reflection. Fig. 6(b) shows the real SIFT points detection
and matching result using algorithm in [17]. Obviously, it is
difficult to recognize the water reflection by matching the SIFT
points.

B. Feature Distortion Caused by Motion Blur

As we described in earlier sections, existing feature space
utilized in symmetry detection and recognition is invalid to the
task of water reflection recognition. Motion blur is considered
to be one of the important causes.

Motion blur is the apparent streaking of rapidly moving
objects in a still image or a sequence of images such as a
movie or animation. The formation model for the motion blur
is:

g(x) = I (x) ∗ h(x) + n(x) (1)

where x = (x, y) ∈ R
2 denotes the coordinates of an image

pixel, I denotes the original image, h(x) is the point spread
function (psf), n(x) is additive noise, g represents the observed
image, and the symbol * stands for the 2D convolution
operation. Assume that translation motion function M(t) =
[Mx (t), My(t)] is known, h(x) has the following form (2):

h(x) = 1

te

∫ to+te

to
δ(x − M(t))dt (2)
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Fig. 7. An example of the motion blur effect in water reflection image with
different exposure time (b) has a longer exposure time to (a).

where the Dirac delta function describes the two-dimensional
displacement function of the image during the exposure inter-
val (t0, t0 + te), where te denotes the exposure period, and 1/te
is a normalizing factor.

Motion blur happens when the image being recorded
changes during the recording of a single image, either due
to rapid movement or long exposure [23]. To the case of
water reflection, motion blur is a result of the interplay
between the speed of oscillation of the surface waves and
the camera’s limited shutter speed. If image shows a perfect
instant in time (analogous to a camera with an infinitely fast
shutter), zero motion blur will be generated. But with the
technological constraints, this is not the real case. Usually,
when a sensor creates an image, that image does not represent
a single instant of time. And a fast moving object or a longer
exposure time may result in blurring artifacts which make this
apparent just as Fig. 7. These two images are downloaded
from Digitalcameraworld [24]. According to the description
in the webpage, the only difference of them is the exposure
time. Both of the images have some degree of motion blur,
and the motion blur in Fig. 7(b) is very obvious.

Shutter speed or exposure time is the effective length of
time a sensor’s shutter is open [25]. The human eye can form
10–12 images per second [26]. The agreed standards of
cameras for shutter speeds are from 1/1000 second to 1 second
[27]. According to the relationship of object distance u and
focal length f , the motion in image could be denoted as
�d = �x × ( f/u), where �x is the motion of the object.
�x can be calculated as the product of the exposure time te
and the velocity v of specific point in the wave profile. As an
example of 1/4 CCD, if the size of image is 640 × 480 pixels
(30M), the pixel size is equal to 5 × 5 μm. We assume the
object distance u is 100 meters and velocity v of specific point
in the wave profile is equal to 0.3 m/sec. Taking the shutter
speeds range into consideration, in this case, the maximum
motion in image is about 30 pixels. If the object distance is
20 meters, the maximum motion in image is about 150 pixels.
If conventional cameras’ exposure time 1/30 second is selected
as the exposure time and the object distance is 20 meters, the
motion is about 5 pixels. It is large enough to change the
image features needed for feature-based recognition.

Although the research on water reflection is very limited,
some image processing applications shed light on the exis-
tence of motion blur. There is a general consensus in image
processing applications’ community that adding motion blur
is a necessary step in faking water reflection images. How to

add motion blur to construct realistic water reflection image
is described in the introduction shown in Photoshopdaily,
10steps.sg and other well known websites for the Photoshop
community [28], [29].

Motion blur changes the image features needed for feature-
based recognition techniques [30]. Furthermore, motion blur
causes a decay of the information and energy in high-
frequency band. The change of high-frequency information
in water reflection is one reason for the invalidity of existing
global algorithms in Fourier domain [15]. In summary, the
theoretical analysis, image processing applications and exper-
iment of different exposure time all support the motion blur
exists in water reflection in general, while the effect is relied
on the exposure time. We believe there are other factors can
distort the feature space and will influence the classification
performance further, such as light dispersion on the wavy
surface. Here, we only consider the motion blur degradation.

To analyze the influence of the motion blur in water reflec-
tion, we need to have a fundamental understanding of water
wave. Water wave could be considered as being composed of a
great quantity of periodic progressive waves. Simply speaking,
a periodic progressive wave is characterized by the amplitude
A, wavelength λ, phase velocity Vp , mean fluid depth H , and
period T (T = λ/Vp). Actually, real water wave is exceedingly
complex as it is also influenced by the depth of water, the
velocity of wind, and so on.

The complex water wave problem could be effectively
simplified into a boundary value problem by Newman [31].
According to the differential equation with the conditions at
the boundaries (bottom boundary conditions and free surface
boundary conditions), the small amplitude wave functions
could be denoted as Eq. 3 in two dimensional x-z plane.
In Eq. 3, ϑ is the velocity potential, gr is the gravitational
acceleration, and η is the wave profile which means the
position of the water surface.⎧⎪⎨

⎪⎩
∂2ϑ
∂x2 + ∂2ϑ

∂z2 = 0 −H < z < η, −∞ < x < +∞
∂ϑ
∂z = 0 z = −H
η = − 1

gr

∂ϑ
∂t

∣∣
z=0

(3)

After solving the wave functions utilizing the method of
variables separation, we could get the function of wave profile
in Eq. 4 and phase velocity in Eq. 5. And the velocity of every
point in the wave profile could be denoted as Eq. 6.

η = A cos(2πx/λ − 2π t/T ) (4)

Vp =
√

gr L

2π
tanh

2π H

λ
(5)⎧⎨

⎩
vx = 2π A cosh 2π(z+H)/λ

T sinh 2π H/λ cos(2πx/λ − 2π t/T )

vz = 2π A sinh 2π(z+H)/λ

T sinh 2π H/λ sin(2πx/λ − 2π t/T )
(6)

Based on Eq. 4, we could conclude that the surface of water
part has different offsets in position due to the water wave.
The offset in position leads to the ineffectiveness of exiting
symmetry algorithms based on local features.

As we known, motion blur could be removed from images
with the help of deconvolution, which is often adopted in the
literature for motion blur detection and recognition. But the
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core idea in deconvolution is to calculate the point spread
function, assuming that the velocity and direction of motion
blur is unique [32], [33]. Eq. 5 and Eq. 6 indicate obviously
that the motion in the water is ubiquitous, and that the velocity
of different position with different frequency is various too
Therefore, the necessary assumption of deconvolution methods
is invalid. Thus, none of existing techniques is effective to this
situation, which necessitates effective feature space to address
the issues resulted from motion blur.

C. Invariant Moment and Curvelet Coefficient Feature Space

As we described before, the key to water reflection recog-
nition is effective feature space that is utilized to address
the problem resulted from motion blur. Based on the char-
acteristics of water reflection, the task of water reflection
recognition could be separated into two parts, the first of
which is to distinguish imperfect symmetry images and the
second is to distinguish water reflection images from imperfect
symmetry images. Therefore, the proposed feature space has
two components focus on these two requirements respectively.

The first component of proposed feature space is the motion
blur invariant moments in low-frequency Curvelet space. This
feature channel is utilized to distinguish imperfect symmetry
images with other images.

Moment invariants were first introduced to the pattern
recognition and image processing community in 1962 [34],
when Hu employed the results of the theory of algebraic
invariants and derived his seven famous invariants to the
rotation of 2D objects. Since then, moment invariants have
become one of the most important and most frequently used
descriptors. There have been numerous papers on moment
invariants to affine and projective transforms, to photometric
changes and to linear filtering of an image.

Image moments are weighted averages (moments) of the
image pixels’ intensities, or functions of those moments,
usually chosen to have some attractive property or interpreta-
tion [35]. Compared with color histogram, the shift of moment
due to the change of illumination will be minimal [36], which
also often happens in water part.

General moment Mpq of an image I is defined as:

Mpq =
∫∫

D

ppq(x, y)I (x, y)dxdy (7)

where p, q are non-negative integers r = p + q is called the
order of the moment, and ppq(x, y) is the polynomial basis
function. The most common choice is a standard power basis
ppq(x, y) = x p yq that leads to geometric moments:

m pq =
∞∫

−∞

∞∫

−∞
x p yq I (x, y)dxdy (8)

The central moments are defined as:

μpq =
∞∫

−∞

∞∫

−∞
(x − x)p(y − y)q I (x, y)dxdy (9)

where x = m10/m00 and y = m01/m00 are the components
of the centroid. If I is a digital image, Eq. 8 and Eq. 9 are
changed to Eq. 10 and Eq. 11.

m pq =
∑

x

∑
y

x p yq I (x, y) (10)

μpq =
∑

x

∑
y

(x − x)p(y − y)q I (x, y) (11)

Moments ηpq where p + q ≥ 2 can be constructed to be
invariant to both translation and changes in scale by dividing
the corresponding central moment by the properly scaled
(00)th moment, using the following formula:

ηpq = μpq

μ

(
1+ p+q

2

)
00

(12)

Based on [37], the following four moment invariants could
be proved invariant to linear motion convolution. Therefore,
these moment invariants are also invariant to motion blur.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I Rm1 = (η30 − 3η12)
2 + (3η21 − η03)

2

I Rm2 = (η30 + η12)
2 + (η21 + η03)

2

I Rm3 = (η30−3η12)(η30+η12)[(η30+η12)
2−3(η21+η03)

2]
+ (3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

I Rm4 = (3η21−η03)(η30+η12)[(η30+η12)
2−3(η21+η03)

2]
+ (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(13)
The most important property of invariant features is invari-

ance. Based on the analysis before, the moment invariants are
satisfied with this property. In moment invariants feature space,
the difference between the object part and the distorted part
due to motion blur is not large. Another desirable property of
invariant features is discriminability. Unfortunately, moment
invariants are not useful to distinguish water reflection from
imperfect symmetry.

Therefore, the second problem is how to distinguish water
reflection images from other imperfect symmetry images.
As we described before, motion blur causes a decay of the
information and energy in high-frequency band. If our feature
space effectively measures the existence of this phenomenon,
we could distinguish water reflection images from imperfect
images successfully. For this end, we utilize the Curvelet
coefficients in high-frequency as one component of proposed
feature descriptors. The Curvelet transform is a multiscale
pyramid with many directions and positions at each length
scale, and needle-shaped elements at fine scales. As the
latest multi-directional & multi-scale transform, Curvelet was
developed in an attempt to overcome inherent limitations of
traditional multiscale representations such as wavelets [38].
Compared with wavelet transform, Curvelet transform has
subtle capability to represent directional features in image [39].

For water reflection images, the object part contains a wealth
of details in various directions, but the reflection part has a
decay of the information and energy in high-frequency band.
To describe the difference fully and accurately, our technique
is based on the Curvelet coefficients in high-frequency band. In
Curvelet transform, the work is throughout in two dimensions,
i.e., R

2, with spatial variable x = (x, y) ∈ R
2, with the fre-

quency domain variable ω, and with r and θ polar coordinates
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Fig. 8. The flowchart of proposed algorithm LRCM-HCCD.

in the frequency-domain. The basic pair of windows includes
the “radial window” W (r) with r ∈ (1/2, 2) and “angular
window” V (t) with t ∈ [−1, 1]. Then, the frequency window
Ua is defined in the Fourier domain as follows:

Ua(r, θ) = 2−3a/4W (2−ar)V

(
2�a/2�θ

2π

)
(14)

where a = 0, 1, . . . is a scale parameter, �a/2� is the largest
integer below a/2. The support of Ua is a polar “wedge”
defined by W and V which is applied with scale-dependent
window widths in each direction.

Define the waveform ϕa(x) by means of its Fourier trans-
form ϕ̂a(ω) = Ua(ω) ω = (ωx , ωy) ∈ R

2 is utilized by letting
Ua(ωx , ωy) be the window defined in the polar coordinate
system. The equispaced sequence of rotation angle is denoted
as θv = 2π · 2−�a/2� · v, with the orientation parameter
v = 0, 1, . . . such that 0 ≤ θv ≤ 2π . And the sequence
of translation parameter is denoted as b = (bx , by) ∈ Z

2.
With these notations, the Curvelets are defined as function of
x = (x, y) ∈ R

2 at scale 2−a , orientation θv and position
xa,v,b = R−1

θv
(bx · 2−a, by · 2−a/2) by Eq. 15,

ϕa,v,b(x) = ϕa(Rθv (x − xa,v,b)) (15)

where Rθ is the rotation by θ radians as follows

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
(16)

So the Curvelet coefficient map ca,v,b(x, y) is then simply
the inner product between an element I (x, y) ∈ L2(R2) of
image and a Curvelet ϕa,v,b.

ca,v,b(x, y) = 〈
I (x, y), ϕa,v,b

〉
(17)

In digital Curvelet Transforms, similar with the continuous-
Time Curvelet transform, Ua smoothly extracts frequencies
near the dyadic corona {2a ≤ r ≤ 2a+1} and near the angle
{−π · 2−a/2 ≤ θ ≤ π · 2−a/2}. But due to the fact that the
coronae and rotation are not especially adapted to Cartesian
arrays, in digital Curvelet transform, the “Cartesian coronae”
based on the concentric squares and shears are utilized. With
scale parameter a = 10, the high-frequency spectral band
is composed of 64 cartesian coronas, and every corona is
corresponding to a specific direction v, v = 1, 2 . . . 64. The

Curvelet coefficient map ca,v,b to every coronae could be
calculated by Eq. 17. The absolute values of the coefficients
indicate the strength of the information in specific direction.

In our proposed feature space, the Curvelet coefficients in
high-frequency band to every coronae is denoted as CCv ,
1 ≤ v ≤ 64.

III. ALGORITHM

In Section II, we have discussed the limitations of existing
feature space and proposed Invariant Moment & Curvelet
Coefficient (IMCC) feature space according to the charac-
teristics of motion blur. Based on the feature space, in this
section, we propose two effective sub-algorithms to recognize
the water reflection image, including: Low-frequency Reflec-
tion Cost Minimization (LRCM) and High-frequency Curvelet
Coefficients Discrimination (HCCD).

Fig. 8 presents the flowchart of the proposed algorithm
LRCM-HCCD. It includes two channels, the low-frequency
and high-frequency Curvelet channels. To the first channel,
the Curvelet transform is utilized to obtain the low frequency
coefficients. We then calculate the moment invariants after
using the inverse Curvelet transform on the low frequency
coefficients. Based on the moment invariants, we minimize the
reflection cost using dynamic programming (DP) and distin-
guish the imperfect images from non-symmetry images. To the
second channel, the high-frequency Curvelet coefficients are
obtained by Curvelet transform. According to the differences
of the coefficients in the image sub-blocks located in both sides
of reflection axis water reflection and imperfect symmetry
images are classified into two categories. Furthermore, the
object part and the reflection part are then distinguishable from
each other.

A. Imperfect Symmetry Recognition by Low-Frequency
Reflection Cost Minimization

In this part, we introduce the sub-algorithm Low-frequency
Reflection Cost Minimization (LRCM) for imperfect symme-
try recognition. The definition of reflection symmetry is given
first.

Definition 1: A set S ∈ Rn is reflection symmetric with
respect to the vector (reflection axis) < cos α0, sin α0 > with
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a reflection transform TDK , if ∀xi ∈ S, ∃ x j ∈ S, s.t,

x j = TDK xi (18)

where for xi ∈ R
2, TDK is given by

TDK (x, y) =
⎛
⎝ cos 2α0 sin 2α0 0

sin 2α0 − cos 2α0 0
0 0 1

⎞
⎠

⎛
⎝ x

y
1

⎞
⎠ (19)

So a centered image I , if it has the reflection symmetry
with the reflection axis < cos α0, sin α0 >, obeys the Eq. 20.

I (x) = I (TDK (x)) ∀x ∈ R
2 (20)

In most conditions concerning imperfect reflection sym-
metry, Eq. 20 could not be strictly complied with imper-
fect symmetry, meaning that in water reflection case,
I (x) ≈ I (TDK (x)),∀x ∈ R

2.
Based on the analysis in Section II, we transform the

imperfect symmetry problem into an optimization problem
based on the complex moment invariants feature space given
by Eq. 21.
⎧⎪⎪⎨
⎪⎪⎩

α∗
0 = arg min |

4∑
i=1

I Rmi (I (x)) −
4∑

i=1
I Rmi (I (TDK (x)))|

min

∣∣∣∣
4∑

i=1
I Rmi (I (x)) −

4∑
i=1

I Rmi (I (TDK (x)))

∣∣∣∣ ≤ I Rthresh

(21)
where I Rthresh is the threshold to distinguish imperfect sym-
metry images from non-symmetry images, and α∗

0 is the tilt
angle of the reflection axis.

The motion blur invariants are effective based on the linear
motion which is valid in local range. But in nature, the
velocity of water in different location with different frequency
is various. In our paper, we solve this dilemma by restricting
the moment features calculation into sub-blocks. We divide the
image into sub-blocks, and we assume the velocity of the water
in every reflection image block keep constant, or the difference
is small. Furthermore, water reflection or other imperfect
symmetry often does not occur in the whole image and the
reflection axis is usually not complete or straight. Taking these
situations into consideration, we do some simplifications based
on the optimized problem shown in Eq. 21.

Images are separated into Ms sub-images vertical to the
supposed reflection axis direction DIα0 . For every sub-image
I j , 1 ≤ j ≤ Ms , the candidate reflection axis is denoted as
R A j,l, 1 ≤ j ≤ Ms , 1 ≤ l ≤ Hα0 , where Hα0 is the height of
the sub-image I j . The sum difference of the moment invariants
DFj,k,l of the image block I 1

j,k,l(x) and its reversed block
I 2

j,k,l(x) located on both sides of line R A j,l is given in Eq. 22:

DFj,k,l =
4∑

i=1

P∑
p

[I Rmi (sub1,p
j,k,l(x)) − I Rmi (sub2,p

j,k,l(x))]
(22)

where sub1,p
j,k,l(x) is the p-th sub-block of I 1

j,k,l(x), sub2,p
j,k,l(x)

is the reversed sub-block of sub1,p
j,k,l(x) in I 2

j,k,l (x). P is the
number of sub-block in image block I 1

j,k,l (x). k is the height
of sub-block which is above the threshold Tk .

Reflection axis distance DSj,l is utilized to measure the
continuity of the adjacent reflection axis denoted as Eq. 23.

DSj,l =
{ ∥∥R A j.l − R A j+1.l

∥∥ /Td + 1 j ≤ Ms − 1
1 j = Ms

(23)

In this equation, ‖R A j.l − R A j+1.l‖ is used to describe
the vertical distance between the candidate reflection axis in
adjacent sub-image I j and I j+1. Td is the factor used to
normalize the distance to an specified range.

We define the reflection cost RC in the current slide window
SWm , 1 ≤ m ≤ Hα0 − Wsw which is decided by DFj,k,l

and DSj,l in Eq. 24. The slide window SWm with width
Wsw is horizontal to the candidate reflection axis direction.
The location of the centerline in SWm is denoted as Lm and
Lm = m + Wsw/2. The minimum of the reflection cost RC
in all slide windows is denoted as M I NRC . The optimized
reflection axis, which is composed of R A j,l∗ in every sub-
image I j of slide window SW∗

m with the minimum of the
reflection cost, is denoted as Eq. 25.

RC =
Ms∑
j=1

(DFj,k,l × DSj,l), Tk ≤ k ≤ Hα0

2
, l ∈ SWm ,

1 ≤ m ≤ Hα0 − Wsw, −π

2
≤ α0 ≤ π

2
(24)

[α∗
0 , SW∗

m , R A1,l∗ , R A2,l∗ , . . . R AMs ,l∗ ]

= arg min

⎡
⎣ Ms∑

j=1

(DFj,k,l × DSj,l )

⎤
⎦ (25)

The aim of this optimization problem is to find M I NRC

and the optimal reflection axis with the corresponding
sub-blocks.

The optimization problem we described in Eq. 24 and
Eq. 25 is similar as the one that is often solved by dynamic
programming (DP). DP is both a mathematical optimization
method and a computer programming method. In both contexts
DP refers to simplifying a complicated problem by breaking
it down into simpler sub-problems in a recursive manner. We
have a preprocessing work before DP to limit the number of
candidate reflection axis R A j,l in every sub image I j . Then
we rank the differences of moment invariants DFj,k,l and only
those R A j,l whose difference falls into the Mn minimum value
are considered as the candidate reflection axis.

Then we define some basic concepts and variables in DP
for water reflection problem. The Stage variable K = j,
1 ≤ j ≤ Ms is used to describe the current stage or sub-
image. The State variable λK in our algorithm λK = R A j,l

is the candidate reflection axis in the sub-image I j . The
decision variable uK in our case, is the choice of the candidate
reflection axis R A j+1,l in the next sub image I j+1. The
Transition function is defined as λK+1 = μK . The Object
function is defined as Eq. 26 where vK is the minimum of
reflection cost in stage K denoted in Eq. 27.

V =
Ms∑

K=1

vK (λK , μK ) (26)

vK = min[DFj,k,l × DSj,l ]
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s.t . K = j, Tk ≤ k ≤ Hα0

2
, l ∈ SWm , 1 ≤ m ≤ Hα0 − Wsw,

− π

2
≤ α0 ≤ π

2
(27)

The DP function is defined using Eq. 28,⎧⎨
⎩

fK (λK ) = min{vK (λK , μK ) + fK−1(λK−1)}
λK ∈ K K = j, 1 ≤ j ≤ Ms

λK+1 = μK

(28)

where fK (λK ) is the minimum of the reflection cost in every
stage K in current SWm . Then we solve the Eq. 28 by positive
sequence method to get the optimized policy in current slide
window SWm . After that, M I NRC that is the minimum of all
RC in different slide windows and in different α0 is calculated
by Eq. 29.

M I NRC = min( fMS (λMs )), 1 ≤ m ≤ Hα0 − Wsw,

− π

2
≤ α0 ≤ π

2
(29)

The algorithm of LRCM is described in Algorithm 1.
We also compare the difference of computational complex-

ity between exhaust algorithm and our DP algorithm. For sim-
plicity, we only calculate that the computational complexity

to find the optimization axis in direction α0. If the exhaust
algorithm is utilize to find the global optimization axis in
Eq. 25, the complexity is: O((W Ms

sw + W Ms
sw × log2(W Ms

sw )) ×
Hα0). To the proposed algorithm, the complexity is: O((Ms −
1) × W 2

sw × log2(W 2
sw) × Hα0). It is obvious that the total

computational complexity of DP is much lower than that of
exhaust algorithm.

B. Water Reflection Recognition by High-Frequency Curvelet
Coefficients Discrimination

Water reflection is a special case of imperfect symmetry.
The algorithm proposed to distinguish imperfect symmetry
with non-symmetry is provided in Part A of Section III. To
further the proposal, the optimized reflection axis with the
corresponding sub-blocks is obtained. In this part, we pro-
pose the sub-algorithm High-frequency Curvelet Coefficients
Discrimination (HCCD) to distinguish water reflection images
from imperfect symmetry images.

As we described in Part B of Section II, one important
characteristic of motion blur is that it causes a decay of the
information and energy in high-frequency band. Therefore, we
focus on the high-frequency Curvelet coefficients to address
distinguishability of water reflection images from other imper-
fect symmetry images.

After the Curvelet transform, the Curvelet coefficients in
high-frequency band CCv , 1 ≤ v ≤ 64 is calculated to every
coronae. As we known, the absolute values of the coefficients
indicate the strength of the information in specific direction
Therefore, for every direction, the differences of the absolute
value between every optimized sub-blocks located in both
sides of optimized reflection axis are calculated by Eq. 30.

DCK ,v =
∣∣∣CC1

K ,v

∣∣∣ −
∣∣∣CC2

K ,v

∣∣∣ (30)

where CC1
K ,v and CC2

K ,v are denoted as the Curvelet coef-
ficients in high-frequency band for direction v and sub-block
pair I 1

K and I 2
K in stage K .

To every sub-block pair, we calculate the sum of the
absolute value spK ,v and snK ,v in positive and negative part
of DCK ,v , respectively.⎧⎨
⎩

spK ,v = abs[
∑
m,n

DCK ,v (m, n)] if DCK ,v (m, n) > 0

snK ,v = abs[∑
m,n

DCK ,v (m, n)] if DCK ,v (m, n) < 0
(31)

We count the number of positive Curvelet coefficients in
object part and in its reflection part, just as Eq. 32⎧⎪⎪⎨

⎪⎪⎩
npK =

64∑
v=1

[
ε(

∣∣spK ,v

∣∣ − ∣∣snK ,v

∣∣)]

nnK =
64∑

v=1

[
ε(

∣∣snK ,v

∣∣ − ∣∣spK ,v

∣∣)]
(32)

where ε(n) is the unit step function, and ε(n) =
{

1 if n ≥ 0
0 if n < 0

.

If to arbitrary k, the absolute difference between npK and nnK

is larger than Tn , the image is water reflection. Otherwise, it
is imperfect symmetry.

Furthermore, in water reflection images, the comparison of
npK and nnK is helpful to distinguish between the object part
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Fig. 9. Sample images with water reflection in classification experiment.

Fig. 10. Sample images without water reflection in classification experiment.

and the reflection part. Compared with the reflection part, the
object part has more high-frequency information. Therefore,
we could tell the object part from its reflection part easily. If
to arbitrary k, npK is greater than nnK , I 1 is the object part;
otherwise, I 2 is the object part.

IV. EXPERIMENTS

To demonstrate the performance of our proposed technique,
we conduct three experiments, including the classification of
nature scene images with and without water reflection, the
detection of reflection axis, and the retrieval of water reflection
images. In our experiments, for the size of image sub-block,
it is difficult to determine the most suitable value. In our
implement, we utilized 64 × 64 as the size of image block
based on two reasons. First, with this size, the calculation
of the moment features can be retained in a local region.
Second, it will limit the computational cost of the moment
features [40]. I also utilized other values as the size of image
block, such as 56 × 56, 48 × 48. It shows stable performance
under these values. To the parameters, we set Tk = 64, Td =
Hα0/12, Mn = Hα0/4, Tn = 35, Wsw = Hα0/25, and Ms is
the largest integer number of the sub-block in the supposed
reflection axis direction DIα0 .

A. Water Reflection Image Classification

In the first experiment, to evaluate the classification accu-
racy of the proposed technique, we construct a dataset includ-
ing 50 images with water reflection and 50 nature scene
images without water reflection. Fig. 9 and Fig. 10 present
the thumbnails of images with and without water reflection
respectively, all of which are utilized in the first experiment.

We subdivide this dataset equally into five folders, and
conduct fivefold cross validations for the learning algorithms.
Every time, we utilize one folder for testing, and the other
four folders for training. If M I NRC is below the threshold
I Rthresh which is learnt by binary SVM classifier based on the

TABLE I

CLASSIFICATION ACCURACY RESULTS

TABLE II

DETECTION ACCURACY RESULTS

training dataset, this image is classified as the water reflection
image. The classification accuracy results are provided in
Table I. The results prove that our proposed technique based
on IMCC features could effectively distinguish the water
reflection images from other nature scene images. To evaluate
the effectiveness of the proposed moment features, we also
provide the classification accuracy using the same algorithm
LRCM-HCCD but based on color histogram. Here, WR stands
for water reflection images and NWR stands for non water
reflection images.

B. Detection the Reflection Axis

To compare with existing symmetry techniques, the detec-
tion experiment is carried out on 100 images with water
reflection where groundtruth reflection axes are provided by
human subjects. The goal of this experiment is to detect
the reflection axis. We first compare our technique with the
representative technique of Loy et al. [17], which utilized the
SIFT detection points as interesting salient points and took
advantage of pairwise matching of their SIFT descriptors to
detect the axis of symmetry. We also compare ours with the
only paper on detection of water reflection axis proposed by
Zhang et al. based on the shape detector [11] To evaluate
different techniques, we use the average Euclidean distance
from all the points on the detected axis to the corresponding
points on the ground truth reflection axis. The detection
accuracy results are provided in Table II. The proposed tech-
nique LRCM-HCCD performs robustly with different distance
threshold.

Examples results are given in Fig. 11 to illustrate the
reflection axis detection results of the three techniques. To
our proposed technique, not only the axis detection results
are provided, the object and reflection regions’ boundaries are
also given by green curve. Although these boundaries do not
cover all of the objects and reflection, the effective and clear
object and corresponding reflection are involved. The regions’
boundaries with the reflection axis provide the hint to further
image analysis, such as segmentation.

Due to the limitations of SIFT detectors and descriptors
discussed in Section II, it is predictable that the accuracy
of the technique [17] is low. The technique [11] utilized
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Fig. 11. Performance comparison of reflection axis detection. First, second
and third column are the results of Shape, SIFT and LRCM-HCCD
respectively.

Fig. 12. Examples of shape detection result of invariant shape technique.

the flip invariant shape detector relying on the completeness
of the shape. Unfortunately, water reflection is a complex
and various phenomena often with incomplete and distorted
shape in reflection part, which leads to the ineffectiveness of
technique [11] just as two examples in Fig. 12.

C. Water Reflection Image Retrieval Experiment

We then apply the proposed technique in text based image
retrieval for evaluation. The textual query is “water reflection”,
every image that is related to this concept is returned. The
dataset is downloaded from Google and is composed of two
parts. The first part is 50 images with water reflection, and the

Fig. 13. Sample images with & without water reflection in retrieval
experiment.

TABLE III

PRECISION AND RECALL RESULTS

second part contains 10000 images without water reflection.
Fig. 13 shows the thumbnails of images with and without water
reflection used in the retrieval experiment. Different from the
nature scene images utilized in classification experiment, the
images in the retrieval experiment are more diversified, and
include imperfect symmetry images.

Many different measures for evaluating the performance of
image retrieval systems have been proposed. In our experi-
ment, we use four popular ones: precision, recall, AveP and
NDCG. Precision is defined as the fraction of the images
retrieved that are relevant to the user’s information need in
the information retrieval system. Recall is the fraction of the
images that are relevant to the query that are successfully
retrieved.

Precision = (NRelevant ∩ NRetrieved )/NRetrieved (33)

Recall = (NRelevant ∩ NRetrieved )/NRelevant (34)

where NRelevant is the number of images which are relevant
to the query and NRetrieved is the number of images that are
finally retrieved out.

In the proposed technique, the Curvelet coefficients in high-
frequency part are utilized to distinguish the water reflection
image from the imperfect symmetry image. In this dataset,
we first demonstrate the retrieval performance with or without
the contribution of Curvelet coefficients part. Table III shows
the Precision and Recall comparison results. The number of
retrieval sample is from 10 to 50 with increments of 10. It
is obviously that the highfrequency coefficients are helpful
to achieve a better classification. Two examples of imper-
fect symmetry images which are correctly distinguished by
Curvelet coefficients are given in Fig. 14.

Precision and recall are single-value metrics based on the
whole list of multimedia documents returned by the retrieval
system. For systems that return a ranked sequence of images,
it is also desirable to consider the order in which the returned
images are presented. Average precision emphasizes ranking
relevant images higher and is computed in Eq. 35 at the point
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Fig. 14. Examples of imperfect symmetry images that are correctly
distinguished by Curvelet coefficients.

Fig. 15. AveP and NDCG results of the retrieval experiment.

of each of the relevant images in the ranked sequence,

AveP@p =

p∑
i=1

(Pi × Reli )

NRelevant
(35)

where p is the rank position Reli is a binary function on the
relevance of a given rank, and Pi is the precision at a given
cut-off rank where NR R(i) is the number of relevant retrieved
images of rank i or less:

Pi = NR R(i)

i
(36)

The premise of DCG is that relevant documents appearing
lower in a search result list should be penalized, as the graded
relevance value is reduced logarithmically with a proportion to
the position of the result. The DCG accumulated at a particular
rank position p is defined as Eq. 37. For a query, the normal-
ized discounted cumulative gain, or NDCG, is computed as
Eq. 38, where IDCG is the ideal DCG at position p. Fig. 15
shows the AveP and NDCG scores of LRCM-HCCD and
RCM [12]. Compared with the existing proposed technique
only based on minimizing the reflection cost, the proposed
technique has better discriminative ability.

DCG@p = Rel1 +
p∑

i=2

Reli

log2 i
(37)

NDCG@p = DCG@p

IDCG@p
(38)

Fig. 16. Object and reflection parts determined by the Curvelet coefficients.
(a) Reversed water reflection image with positive Curvelet coefficients of
reflection and object part. (b) Reversed water reflection image with positive
Curvelet coefficients of reflection and object parts.

D. Discussion

According to the three experiments and a series of eval-
uations, our proposed feature descriptors and techniques are
proven effective in water reflection detection and recognition.
Moreover, our technique has an additional advantage in detect-
ing which part is the object in water reflection images Fig. 16
gives two sample images from our dataset, both of which have
been uploaded upside down. Due to the similarity of object
and reflection parts, such case is even difficult to be detected
by human eyes in the original image size. As described
in Section II, the object part tends to have larger Curvelet
coefficients in high-frequency band. Thus a comparison of
Curvelet coefficients located on the both sides of the reflection
axis could help determine the object part easily and correctly.

V. CONCLUSION

Water reflection is a special case of imperfect reflection
symmetry problem, but no existing techniques have been pro-
posed to address the task of water reflection image classifica-
tion. To address this problem, we propose a novel feature space
Invariant Moment & Curvelet Coefficient (IMCC) according to
the characteristics of motion blur in water reflection images.
An effective and efficient water reflection classification and
reflection axis detection technique is then constructed based on
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IMCC. Experiments and evaluation all confirmed the effective-
ness and robustness of our technique, which is more reliable
and successful compared with existing feature space and
algorithms. In future, we are interested in investigating how
to model, estimate or remove other possible degradation in
water reflection, such as light dispersion on the wavy surface.
We want to analyze the influence of different degradations and
explore a novel technique to distinguish different distortions
from motion blur or from light dispersion.
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