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Deep residual learning for image steganalysis
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Abstract Image steganalysis is to discriminate innocent images and those suspected images
with hidden messages. This task is very challenging for modern adaptive steganography,
since modifications due to message hiding are extremely small. Recent studies show that
Convolutional Neural Networks (CNN) have demonstrated superior performances than tra-
ditional steganalytic methods. Following this idea, we propose a novel CNN model for
image steganalysis based on residual learning. The proposed Deep Residual learning based
Network (DRN) shows two attractive properties than existing CNN based methods. First,
the model usually contains a large number of network layers, which proves to be effective to
capture the complex statistics of digital images. Second, the residual learning in DRN pre-
serves the stego signal coming from secret messages, which is extremely beneficial for the
discrimination of cover images and stego images. Comprehensive experiments on standard
dataset show that the DRN model can detect the state of arts steganographic algorithms at
a high accuracy. It also outperforms the classical rich model method and several recently
proposed CNN based methods.
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1 Introduction

The development of network technology provides users a great convenience for data com-
munication. A key problem of data communication on the Internet is to transmit data from
a sender to its receiver safely, without being eavesdropped, illegally accessed or tampered.
Steganography, which is the art or science that hides secret message in an appropriate mul-
timedia carrier including text, image, audio, or video [3], provides an effective solution. In
contrast to steganography, steganalysis is to reveal the presence of secret messages embed-
ded in digital medias [33]. These two techniques are widely used in many important fields,
such as the commercial communication and the military communication [7, 25].

Image steganography and image steganalysis have attracted great interests in recent years
[15, 16, 34]. Early studies on image steganography were to hide secret messages in image
regions that are insensitive to human’s visual system, indicating that salient regions in digi-
tal images [27, 28] are avoided for message hiding. Recent researches have extended image
steganography and steganalysis into a more general case, which is illustrated in Fig. 1. For
image steganography, the sender hides the message m in the cover image X. By apply-
ing the message embedding algorithm Emb(X, m, k) and the key k on X, the stego image
Y is generated and then passed to the receiver. By applying the message extraction algo-
rithm Ext(Y, k) and key k on Y, the receiver can recover the secret message m. During
the communication, the sender and the receiver should pledge that any intended observer in
the channel cannot differentiate ¥ from X. For image steganalysis, however, it represents
some observers in the communication channel that attempt to discriminate the stego image
Y against the cover image X.

Most of methods formulate image steganalysis as a binary classification problem. This
formulation is also called universal steganalysis [18], attracting increasing attentions in
recent years. In the training phase, universal methods first extract handcrafted features from
input images. Then, a binary classifier such as support vector machine [21] or ensemble
classifier [15], is trained based on extracted features to discriminate cover images and stego
images. In the testing stage, this trained classifier is used to determine whether a new input
image is a cover or a stego. For universal methods, designing features that are sensitive
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Fig. 1 Schematic illustration of steganography and steganalysis
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to message embedding is the key. Subtractive Pixel Adjacent Matrix (SPAM) [24] extracts
second order Markov features of adjacent pixels to reliably detect the Least Significant Bit
Matching steganography (LSBM). Spatial Rich Model (SRM) [8] combines many diverse
co-occurrence matrices to form a large feature vector for message detection. Projection Spa-
tial Rich Model (PSRM) [12] projects noise components into many predefined directions to
capture various histogram features.

However, designing effective handcrafted features is difficult. This is a challenging task
which needs strong domain knowledge of steganography and steganalysis. In addition,
handcrafted features are often high-dimensional in order to capture various statistical prop-
erties of input images, making the feature extraction and model training computationally
intensive. In order to address these difficulties, many interesting works have proposed to use
convolutional neural network for image steganalysis. Compared with handcrafted features,
CNN can automatically learn effective features to classify cover images and stego images.
Tan and Li [32] presented a stacked convolutional auto-encoder to detect the presence of
secret message. Qian et al. in [26] proposed a CNN model by using the Gaussian activation
function and average pooling. Xu et al. [36] designed a novel CNN architecture to detect
adaptive steganography by incorporating the domain knowledge of steganalysis. Xu et al.
[37] also proposed to use an ensemble of CNN models to improve the detection accuracy.
Pibre et al. [23] proposed a shallow but wide model. Couchot et al. [5] presented a CNN
model with very large convolutional kernels.

Deep neural network models are able to approximate highly complex functions more
efficiently than the shallow ones [2]. This ability indicates that very deep neural network
can capture complex statistical properties of natural images, which may be beneficial for
image classification. Recent works also verify that deep neural networks achieve much bet-
ter performances than previous methods in many applications [4, 20, 22, 35, 38—40]. Even
though great success has been achieved for very deep neural networks in image recognition,
existing networks for image steganalysis are still shallow ones.

Recently, He et al. [10] has proposed a very deep CNN model — the deep residual net-
work for image classification. The network has successfully overcome the performance
degradation problem when a neural network’s depth is large. Because of its great success in
image recognition, this paper aims to propose a novel CNN model based on residual learn-
ing for image steganalysis. Two appealing characteristics of the proposed DRN make it
suitable for image steganalysis. First, the depth of DRN is large, providing the network with
powerful ability to capture useful statistical properties of input covers and stegos. Second,
instead of learning an underlying function directly, DRN explicitly approximates a resid-
ual mapping, which forces the network to preserve the weak signal generated by message
embedding. We present comprehensive experiments on the standard BOSSbase [1] dataset
and five state of the art steganographic algorithms. Experimental results show that, DRN is
not only better than the classical rich model method, but also outperforms several recently
proposed CNN models.

The rest of this paper is organized as follows. In Section 2, we introduce basic knowledge
about CNN and review modifications to CNN models for image steganalysis. In Section 3,
we briefly describe residual learning and explain its rationality for steganalysis. In Section 4,
we introduce the proposed model in details. In Section 5, we compare the proposed net-
work with the rich model steganalysis and other CNN based methods on state of the art
steganographic algorithms. The paper is finally concluded in Section 6.
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2 Convolutional neural networks for steganalysis

2.1 Brief introduction to convolutional neural network

CNN has achieved a great success for many image related tasks [10, 30, 31], indicating
its superior capacity to capture the structure of natural images. In general, a typical CNN
contains four basic building layers:

Convolution layer. This layer is to use one or several filters (the size is usually set to
3 x 3,5 x5o0r7 x 7)to convolve the input images, generating different feature maps
for subsequent processing:

Firt = "w/F + b M)
i

where F ]I denotes the j-th feature map of the /-th layer, Wl.lj represents the convolu-

tional kernel and bll. is the bias. The filters Wllj and bias blj at each layer of a CNN
model are not fixed but can be automatically learned by the back-propagation algo-
rithm. Thus, well learned filters can extract different structures in natural images for
accurate modeling.

Nonlinear mapping layer/activation layer. This layer is to transform the input feature
map through nonlinear mapping:

Fit = ¢ (Fjl) @)

f () is a point-wise nonlinear function, such as sigmoid, tanh, ReLU [9], leaky ReLU
[11], etc. The nonlinear mapping layer is important for CNN, since a neural network
with any number of layers is equal to the network with just one layer if there is no non-
linear mapping. In addition, nonlinear mapping makes the CNN extract more complex
correlations in natural images.

Pooling layer. This layer is to reduce dimensionality of input feature maps, making the
extracted features compact:

I+1 _ l
Fj = pool (F/> (3)

where pool(-) denotes the pooling function. Generally, there are two kinds of pooling
function in existing CNN models: maximum pooling and average pooling. Maximum
pooling is to select the maximum value in a local region as the output, while average
pooling is to calculate the average value of a local region as the output. The main role
of pooling is to aggregate input feature maps into a compact representation. In addition,
large distance correlations in natural images can be captured by pooling the feature map
into a small size.

Batch normalization layer. This layer is to normalize each data item x; in a training
batch B into y;:

yi=vii+p 4

where y and § are parameters of batch normalization. X; denotes:
Pk -1C7)
' Varg (xi)

In (5), Ep(x;) and Varpg(x;) represent the mean and the variance of x; in terms of the
batch 5. The main function of batch normalization is to enforce the data far away from

&)
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the saturation regions. Due to this advantage, a neural network with batch normalization
is relatively insensitive to the parameter initialization and converges in a fast speed than
a network without batch normalization.

Structural advantages of CNNs make them suitable to capture complex statistics of nat-
ural images. This is the main reason that CNN models achieve superior performances on
many image related tasks. In the following part, we review various modifications to CNN's
for image steganalysis.

2.2 Convolutional neural network for image steganalysis

Although CNN models have achieved a great success in image classification, directly
applying them for image steganalysis may not work. Steganalysis is different from image
classification that it aims to discriminate covers and covers added with weak signals (ste-
gos). In order to adapt to this feature, existing methods have made a series of modifications
to the basic operations in CNN models:

— Modifications to Convolution. Most CNN based steganalytic methods [26, 32, 36, 37]
use small size convolutional filters to convolve input images. The advantage of using
small size convolutional filters is that they can capture various local correlations among
image pixels and thus extract effective features for image steganalysis. Instead of using
convolutional kernels with small size, several CNN based steganalysis prefer to use
large convolutional kernels to detect steganography. This design can be found at in
Pibre’s network [23] and Couchot’s network [5]. For steganography with a fixed mod-
ification pattern, a large kernel can sum enough weak stego signals into a more strong
stego signal for accurate detection. However, most of modern steganographic algo-
rithms embed secret messages adaptive to the content of cover images, which would
make this method disable.

— Modifications to Activation Functions. The activation function is important for CNN
based image steganalysis. The design or selection of activation function should enable
the CNN to extract discriminative feature for the classification of covers and stegos.
Qian et al. [26] in their network demonstrated a Gaussian activation function is better
than a classical sigmoidal function. In order to improve the statistical modeling to the
noise components of input images, Xu et al. [36] inserted an absolute layer behind the
first convolutional layer. Unlike a ReLU activation function that simply discards the sig-
nal smaller than zero, the absolute layer in this network can preserve the discriminative
information in the negative region.

— Modifications to Pooling. For a traditional CNN model, pooling aims to reduce the
dimensionality of feature maps and obtain a compact representation to input data.
Most CNN based steganalysis [26, 32, 36, 37] use pooling to extract compact features
for classifying cover images and stego images. However, Pibre [23] and Couchot [5]
believed that pooling is a information losing process and the pooling is discarded in
their networks.

— Modifications to Batch Normalization. There are few works that use batch normaliza-
tion for image steganalysis. Xu et al. [36] firstly combined the batch normalization and
tanh activation function in their network. The batch normalization makes the data fall
into regions far from saturation regions, making their network be learned effectively.

Although many modifications have been made to adapt CNN models for image steganal-
ysis, there still exist no effective learning mechanism to preserve the weak setgo signal
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in existing networks. In the following section, we introduce a new learning call residual
learning to address this problem and explain its rationality for image steganalysis.

3 Residual learning
3.1 Basic idea of residual learning

In [10], He et al. proposed a novel CNN model called deep residual network for image
classification. The main difference between a residual network and a typical CNN is that
they have different network architectures, which are shown as Fig. 2. For a typical CNN
model, it organizes the architecture by combining basic units such as convolution, nonlinear
mapping, pooling or batch normalization in a cascade manner. But for a residual network,
it has a shortcut pathway directly connecting the input and the output in a building block.
Mathematically, instead of approximating an underlying function H (x) directly, residual
learning turns to fit its residual mapping F(x), where:

F(x):=H(x)—x 6)

The final mapping of a residual learning block is F(x) + X, which is equal to the output of
a typical CNN, that is H (x). However, as indicated by He et al. in [10], it is easier to fit a
residual mapping F(x) than the original mapping H (x), especially when H (x) is an identity
or a near identity mapping. This property enables that the depth of residual network can be
increased to be very large, without degrading the network’s classification accuracy.

3.2 Rationality of residual learning for steganalysis

Actually, to detect the presence of secret message, steganalysis should correctly classify an
input image y as:

c+ 0, cover

= { @)

¢+ m, stego

where ¢ represents the innocent cover image, 0 is zero signal, and m denotes the weak stego
signal generated by message embedding. By feeding x into a residual learning block, the
identity mapping of the network puts forward c to the output of the block, while the residual
mapping F (x) fits 0 or m. Since both 0 and ¢ are small signals, they can be effectively mod-
eled by the residual learning network F(x). Consequently, m is effectively captured by the
residual mapping network. Therefore, the weak stego signal is expected to be preserved and

v
l Residual Identity
) mapping F(x) Mapping
Mapping H(x)
'

H(x) = F(x)+x

Fig. 2 Basic building blocks in different CNN models. Left: a basic building block in a typical CNN model.
Right: a basic building block in a residual network
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emphasized through the whole network. This advantage makes residual learning extremely
suitable for image steganalysis.

4 Deep residual network for steganalysis

In this section, we introduce the proposed DRN model for image steganalysis. Firstly, we
present the overall architecture of DRN in details. Then, we describe the parameter learning
to the DRN model.

4.1 Network architecture

Figure 3 illustrates the architecture of DRN in this paper. The network contains three sub-
networks, i.e. the high-pass filtering (HPF) sub-network, the deep residual learning sub-
network and the classification sub-network. These sub-networks have their own roles in
processing the information in the overall model, which are described as follows.

The HPF sub-network is to extract the noise components from input cover/stego images.
Previous studies indicate that preprocessing input images with HPF can largely suppress
their contents, leading to a narrow dynamic range and a large signal-to-noise ratio (SNR)
between the weak stego signal and the image signal. As a result, statistical descriptions to
the filtered image become more compact and robust [8]. For this reason, we do not directly
feed original images into the network but input their noise components. Mathematically, the
noise component of an image n is the convolution between the image I and a HPF kernel k:

n=1Ixk (8)

where * denotes convolution operator. We follow the general setting and choose the k as the
KV kernel [26, 36]:
-1 2 -2 2 -1
1 2 -6 8 —6 2
KV=—1]-28 —-12 8 -2 ©)

1000 neurons
512 cature
28256 e maps g
64 feature maps 64 64 feature maps feature maps
feature maps feature maps
256 x 256 256 x 256
1@5 x 5 HPF —h
64@7 x 7 =) =
D\\_‘ Max ResL
=t pooling block
Input image Filtered image m, ResLblocks n, ResLblocks 7 ResLblocks 1 ResLblocks
\ J L J J
I I
HPF Residual learning Classification
sub-network sub-network sub-network

Fig. 3 DRN for steganalysis. In the HPF sub-network, a 5 x 5 KV kernel preprocesses input cover/stego
images to get their noise components. In the residual learning sub-network, there are two kinds of building
blocks: the residual learning block (ResL) and the dimension increasing block. ny, ny, n3, or n4 denotes that
there are ny, ny, n3, or ng ResL blocks following the current layer. The classification sub-network finally
maps features into labels. In this figure, p@g x g denotes that there are p filters with the size of ¢ x g. The
ReLU activation layer, the maximum pooling layer, and the batch normalization layer are not shown in the
figure
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The residual learning sub-network is to extract effective features for discriminating cover
images and stego images. The sub-network firstly use 64 convolutional filters (the size is
7 x 7) to convolve input images, generating many feature maps for subsequent processing.
Following the convolutional layer, there are a ReLU activation layer, a maximum pooling
layer and a batch normalization layer. This processing is to capture many different types
of dependencies among pixles in the noise component images. Its purpose is to make the
network extract enough statistical properties to detect the secret message accurately. For the
residual learning layer, it is constituted by two kinds of building blocks: the non-bottleneck
block and the bottleneck block, which are shown as Fig. 4. For a non-bottleneck block, it
has two convolutional layers with the size of 3 x 3. Each convolutional layer is followed
by a ReLU activation layer, a maximum pooling layer and a batch normalization layer.
For a bottleneck block, the number of convolutional layer is three. Furthermore, two sizes
of convolutional filters are used in the block: 1 x 1 and 3 x 3. In practice, a bottleneck
block is more economical for building CNN models with large depths. For ordinary residual
learning, both the input and the output of two building blocks have the same sizes. For
dimension increasing, the output has double size of feature maps than the input. To force
each block having the same complexity, the feature map is down-sampled by factor 2 for the
dimension increasing block. In our DRN model, there are four stages of processing, which
increases the number of feature maps from 64 to 512.

The final classification sub-network consists of fully connected neural network model,
mapping features extracted from the residual learning sub-network into binary labels. To
ensure the modeling ability of this sub-network, we set the number of neurons to 1000.

4.2 Network training

Parameters of the residual learning sub-network and the classification sub-network are
learned by minimizing the softmax function:

1 i i ik (Xi,0)
i =k log | — oy (10)
l=l k=1 Zk eolk(xhe)
D
A 4
3x3, D
Residual 7 X Residual X
mapping F(x) l e Identity mapping F(x) Identity
3x3,D/2D
L v
F(x)+x — F(x)+x <
relu v relu
(a) A non-bottleneck building block (b) A bottleneck building block

Fig. 4 The non-bottleneck building block and the bottleneck building block in a residual network. The
output can have same dimension or double dimension of the input, corresponding the residual learning and
the dimension increasing respectively
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where y; denotes the label of the sample x;, §(-) represents the delta function, N is the
number of training samples, K is the number of labels (K = 2). 0;x(x;, #) denotes the
output for the i-th sample x; at the k-th label. 0 is the parameter of the network. For a neural
network model, 8 generally represents the weight matrix W or the bias vector b. The weight
matrix and bias vector for each layer is updated by the gradient descent:

oL
b+ 1) =b() — oL 12
( ) =b() LTS (12)

where « is the learning rate. Be aware that, in (11) and (12), all training samples are involved
in the computation of total loss L. In order to reduce the computation, we follow the learning
method in [10] and use the mini-batch Stochastic Gradient Descend (SGD) to optimize the
network.

The whole process to train the proposed DRN model is illustrated as the following
algorithm:

Algorithm 1 Learning the proposed DRN model

Input : cover images ¢, steganographic algorithm A, the KV kernel k, the untrained
DRN model D, parameter learning rate c.
1 Use steganographic algorithm A to generate stego images s
s = A(e)
2 Preprocess cover images ¢ and stego images s with the KV kernel k in the HPF
subnetwork:
n=xx*xk, x € {c,s}
3 while D is not converged do
4 Calculate the softmax loss L with Eq.(10);
5 Update the parameter of D by gradient descend:
L (x)
0@ +1)=06(1) —a— 0 € {W, b}
6 Check whether the network D is converged.
7 end
Output: a well trained DRN model D.

5 Experiments

In this section, we conduct several experiments to demonstrate effectiveness of proposed
DRN for image steganalysis. We first give experimental settings to the DRN model, includ-
ing the evaluation dataset and the parameter setting of learning the model. Then, we use an
experiment to determine the best network architecture for image steganalysis. Based on the
best network architecture, we demonstrate the effectiveness of the feature learned by the
proposed method. We finally compare the proposed DRN with traditional rich model based
methods and the state of the art CNN based methods.
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5.1 Experimental settings

The dataset used for performance evaluation is the BOSSbase 1.01 version [1]. The BOSS-
base is a standard dataset for evaluating steganalysis and steganography. It contains 10,000
grayscale natural images with the size of 512 x 512. Following general settings in recent
CNN based steganalysis [12, 15, 32], we crop the original 10,000 BOSSbase images into
40,000 non-overlapped images with the size 256 x 256. Figure 5 shows several sample
images in the cropped BOSSbase dataset.

For the DRN model, we initialize its weight matrices W by a zero-mean Gaussian distri-
bution with the fixed standard derivation of 0.01. The bias vector b is initialized to be zero.
The learning rate o, momentum and weight decay of the model are set to 0.001, 0.9 and
0.0001 respectively. The size of mini-batch for SGD is set to 10. All experiments for the
DRN are conducted on Nvidia’s Tesla K80 platform.

5.2 Relationship between the detection accuracy and the number
of convolutional layers in DRN

This experiment is conducted to investigate how the number of convolutional layers in DRN
affects the performance of image steganalysis. We randomly select 30,000 cover images
from the cropped BOSSbase, and their stegos which are generated by Spatial UNIversal
WAvelet Relative Distortion (S-UNIWARD) steganography [13] at payload 0.4 bit-per-pixel
(bpp), are used for training the DRN model. The rest 10,000 covers and stegos are used for
testing. The performance is evaluated by the average detection error rate Pg:

1
Pg = 5 (Pra + Pup) (13)

where Pr4 denotes the false alert rate and Py, p represents the miss detection rate. For the
configuration of DRN, we select DRN models with 10, 20, 30, 40, 50 and 60 convolutional
layers for evaluation. These DRN models are configured as Table 1.

Figure 6 reports detection error rates of DRN models with different number of convo-
lutional layers. When the number is smaller than 50, detection error rates decreases as the
number increases. The result indicates that deeper DRN model can capture more reliable
statistical properties of natural images than the shallow one for accurate steganalysis. How-
ever, when the number is 60, the overfiting phenomenon arises and results in the increase
of the detection error rate. For this reason, we set the number of convolutional layer to 50 in
the following experiment.

Fig. 5 Sample images in the cropped BOSSbase dataset
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Table 1 Configurations for

DRN models # conv. Block Type [n1,n2,n3, n4]
10 Non-bottleneck block [0, 0,0, 0]
20 Non-bottleneck block [1,2,1,1]
30 Non-bottleneck block [2,3,3,2]
40 Non-bottleneck block [2,5,5,3]
[n1, n2, n3, n4] represents the
number of blocks for ordinary 50 Bottleneck block [2,3,5,2]
residual learning, which is 60 Non-bottleneck block [2,8,8,7]

illustrated in Fig. 1

5.3 Effectiveness of the feature learned by DRN

This experiment is to demonstrate the effectiveness of the feature automatically learned by
the proposed DRN. Same to the first experiment, we select the S-UNIWARD steganogra-
phy at 0.4 bpp for evaluation. The last feature map before the output node in DRN model
is selected as the automatically learned feature. We choose the classical Spatial Rich Model
(SRM) feature [8] for performance comparison. SRM is a classical steganalytic method for
detecting modern steganographic algorithm. It consists of many high order co-occurrence
matrices to make the model sensitive enough to various operations of data embedding. In
order to observe the distribution of cover images and stego images, we use the Linear Dis-
criminant Analysis (LDA) to reduce the dimension of DRN features and SRM feature into
2-dimension.

Figure 7 shows 2D distributions of DRN features and SRM features for cover images
and stego images. It is obvious that cover images and stego images of SRM features are
completely mixed with each other, while they can be easily separated by the DRN features.

30 T

25 SN - - - mmm i gm i imim o

20—

Detection error rates: %
v
I

20 30 40
Number of convolutional layers (# conv.)

Fig. 6 Detection error rates for DRN with different number of convolutional layers
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_2 1 1 1 1 1
-2 -1.5 -1 -05 0 0.5 1 1.5 -6 -4 -2 0 2 4 6 8

(a) Spatial rich model (b) Deep residual network
Fig. 7 2D distributions of extracted features for cover images and stego images

This result demonstrates that the proposed DRN can learn more effective features than the
classical SRM for image steganalysis.

5.4 Performance comparisons with prior arts

To demonstrate the effectiveness of the DRN for image steganalysis, we compare its per-
formances with the SRM [8] and maxSRMd2 [6]. maxSRMd2 is an improved version of
SRM, which is especially designed for adaptive steganography. Unlike SRM that extracts
features with an equal weight to each pixel, maxSRMd2 focuses more on the pixels with

0.4 T

=— Training error
=49 Testing error

0.35

0.3

e
1)
G

Detection error rate
S
(3]

0.15

0.125

0.1

0.075

0.05

Training epoches

Fig. 8 Training error and detection error of DRN on S-UNIWARD steganography at 0.4 bpp. The
performance jump at 50-th epoch is because of the learning rate change
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Table 2 Detection error rates

for four states of the art Steganography SRM maxSRMd2 DRN

steganographic algorithms

at payload 0.4 bpp WOwW 20.1 % 152 % 4.3 %
S-UNIWARD 20.3 % 18.8 % 6.3 %
HILL 242 % 21.6 % 10.4 %
MiPOD 22.1 % 20.4 % 4.9 %

high embedding probability. Both the SRM based steganalysis and the maxSRMd2 based
steganalysis use the ensemble learning [15] to train the classifier.

Four states of the art steganographic algorithms, including the Wavelet Obtained Weights
steganography (WOW) [14], S-UNIWARD [13], HILL [19] and MiPOD [29], are used for
evaluating the effectiveness of steganalytic algorithms. All these algorithms embed secret
message adaptive to the content of an input image. They tend to hide messages into pixels of

True positive rate

1 ’
’
"
= = = Random guessing || 02l e = = = Random guessing[|
- - SRM R == SRM
= = = maxSRMd2 i 0.1 R4 - = = maxSRMd2 i
Proposed e —— Proposed
0 L L L L L L T T T 0 L L L L L L T T T
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

False positive rate

(a) WOW steganography

True positive rate

0.2 iy ¢ = = = Random guessing 1
L == SRM
0.1 Re = = = maxSRMd2 I
e — Proposed
0 L L L L L L T T
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

(C) HILL steganography

True positive rate

True positive rate

False positive rate

(b) S-UNIWARD steganography

= = = Random guessing{
== SRM
= = = maxSRMd2 1
— Proposed

T n T

0 n n n n n n

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
False positive rate

(d) MiPOD steganography

Fig. 9 ROC curves for SRM, maxSRMd2 and the proposed network on four steganographic algorithms

@ Springer



Multimed Tools Appl

Table 3 Detection error rates

for CNN models on three Steganalytic methods WOwW S-UNIWARD HILL

steganographic algorithms at 0.4

bpp. ‘\’ denotes that the resultis ~ Qian’s network [26] 293 % 30.9 % \

not reported in the paper Xu’s network [36] \ 19.7 % 20.7 %
Proposed DRN model 4.3 % 6.3 % 10.4 %

complex regions, i.e. pixels with low embedding distortions. The only difference between
these algorithms is that they use different distortion functions for message hiding.

Same to the setting in the first experiment, 30,000 randomly selected cover images and
their corresponding stegos are used for training CNN models, the rest 10,000 cover images
and their stegos are for testing. The average detection error rate Pg is used as the evaluation
criterion.

Figure 8 shows the training error curve and detection error curve of DRN. It can easily
find the detection error is very close to the training error, which demonstrates the superior
generalization ability of DRN for image steganalysis. Table 2 gives the overall performance
comparisons of DRN against to SRM and maxSRMd2. Figure 9 shows Receiver Operat-
ing Characteristic (ROC) curves for three methods on four steganographic algorithms. We
can find that DRN is better than the rich model based methods across all steganographic
algorithms. Meanwhile, among all steganographic algorithms, the detection performances
of DRN indicate that HILL is most hard to be detected while WOW is the easiest to be
detected. This is consistent with the results of SRM and maxSRMd2. We also compare DRN
with three representative CNN models, including Qian’s network [26] and Xu’s network
[36]. Results in Table 3 demonstrate that the DRN also outperforms these CNN models for
steganalysis.

6 Conclusion

This paper introduced a novel convolutional neural network model for image steganalysis.
The proposed model has two obvious differences with existing works. First, the proposed
network has a relatively larger depth than current CNN based models. Second, a novel
learning mechanism called residual learning is used to actively preserve the weak stego
signal. Experiments on standard dataset have demonstrated that the proposed network has
following contributions:

— CNN with large depth shows a superior ability to model natural images. It can extract
complex statistical features for classifying cover images and stego images.

— Residual learning proves to be effective to preserve the weak stego signal, make the
proposed model capture the difference between cover images and stego images. In addi-
tion, features automatically learned by proposed network are more easily classified than
classical rich model based features.

Current work demonstrates that a deep network with residual learning can detect spatial
domain steganography effectively. We will extend this work to detect compressed domain
steganographic algorithms. Furthermore, like existing CNN models that are computationally
expensive, the proposed model also needs enough computational resources to support its
efficiency. We will also focus on improving its training efficiency in future.
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