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A Brain-Media Deep Framework Towards Seeing
Imaginations Inside Brains
Jianmin Jiang, Ahmed Fares∗, and Sheng-hua Zhong

Abstract—While current research on multimedia is essentially
dealing with the information derived from our observations
of the world, internal activities inside human brains, such as
imaginations and memories of past events etc., could become a
brand new concept of multimedia, for which we coin as “brain-
media”. In this paper, we pioneer this idea by directly applying
natural images to stimulate human brains and then collect the
corresponding electroencephalogram (EEG) sequences to drive a
deep framework to learn and visualize the corresponding brain
activities. By examining the relevance between the visualized
image and the stimulation image, we are able to assess the
performance of our proposed deep framework in terms of not
only the quality of such visualization but also the feasibility of
introducing the new concept of “brain-media”. To ensure that our
explorative research is meaningful, we introduce a dually con-
ditioned learning mechanism in the proposed deep framework.
One condition is analyzing EEG sequences through deep learning
to extract a more compact and class-dependent brain features
via exploiting those unique characteristics of human brains such
as hemispheric lateralization and biological neurons myelination
(neurons importance), and the other is to analyze the content
of images via computing approaches and extract representative
visual features to exploit artificial intelligence in assisting our
automated analysis of brain activities and their visualizations.
By combining the brain feature space with the associated visual
feature space of those images that are candidates of the stimuli,
we are able to generate a combined-conditional space to support
the proposed dual-conditioned and lateralization-supported GAN
framework. Extensive experiments carried out illustrate that our
proposed deep framework significantly outperforms the existing
relevant work, indicating that our proposed does provide a good
potential for further research upon the introduced concept of
“brain-media”, a new member for the big family of multimedia.
To encourage more research along this direction, we make our
source codes publicly available for downloading at GitHub1

Index Terms—EEG, Image Generation, Deep Learning, Brain
Media, Bi-directional Computation, Variant LSTM.

I. INTRODUCTION

MULTIMEDIA has been extensively researched over the
past decades, in which all the forms of multimedia,
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Fig. 1. Illustration of our research work on visualization of brain activities
via the proposed deep framework (part-(a)) and the scenarios of our achieved
experimental results (part (b)).

such as texts, audios, images and videos etc. can be regarded as
external, since all of them essentially record what we see rather
than what we thought. Yet some elements of the thoughts,
such as imaginations, aspirations, and emotional memories
etc., could be visualized and reproduced into a new form of
multimedia. For the convenience of presentation, we coin such
a new form of multimedia, reflecting the internal world inside
human brains, as “brain-media”. As a matter of fact, studies on
brain activities, especially via electroencephalograms (EEGs),
have been researched across a number of areas, including
neuroscience, brain science, psychology and computer sci-
ence [1], [2], [3], [4]. For the past decades, research on
understanding brain activities has been active through EEGs
evoked by specifically designed stimuli for brain computer
interfacing (BCI) [5], [6], [7], and studies in both psychology
and neuroscience reveal that up to a dozen of special categories
can be recognized by event-related potential (ERP) recorded
via EEGs [8], [2]. Further, a range of machine learning models
[9], [10], [11] have also been developed to address the problem
of multimedia-evoked brain understanding through approaches
of pattern recognition and classifications, and many improved
results have been reported in the literature. In this paper, we
push the existing EEG-based brain research a step further and
promote such research towards the direction of introducing
a new concept of multimedia, i.e. brain-media, and hence ex-
plore the possibility of enabling people to see what we thought
rather than what we see. To turn such an ambitious notion into
a feasible research direction, we propose a GAN-based deep
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framework to visualize those brain activities evoked by natural
images.

Fig. 1 illustrates the concept of our proposed research as
well as some samples of the visualized results. As seen in
part (a), the brain is evoked by a “bolete” image and its
activated EEG sequences are fed into our proposed GAN-
based deep framework. Via deep adversarial learning of the
EEG sequences, an image is generated at the output to
visualize the cognitive activities inside the human brain, which
corresponds to its responses to the stimulating image at the
input. By comparatively examining the relevance of the two
images between the input stimuli and the output, we are able to
evaluate the visualization performances of the proposed deep
framework in terms of both the accuracy of the visualization
and the quality of the visualization. Part (b) of Fig. 1 illustrates
two rows of sample images generated as the visualization
outputs. While the first row of samples are the “bolete” images
generated by our proposed deep framework, the second row
represents the samples generated by the existing research,
brain2image GAN [12], which is used as the benchmark
for evaluating our proposed deep framework. As seen, our
generated output images have significantly better quality than
that of the benchmark, indicating a high level of improvement
by our proposed. Further experiments reported later in this
paper also validate that our proposed achieves a much better
accuracy, too, as supported by the corresponding classification
results.

In addition to the ambitious concept of brain-media to
enable us to see what we thought, our proposed research
reported in this paper has twofold contributions, which can
be highlighted as: (i) our proposed dually conditioned GAN
exploits the interactions across both the brain domain and the
visual domain to enhance the adversarial learning and hence
achieve significantly improved results on both visualization
quality and accuracy. While the brain domain provides es-
sential support for our proposed deep framework to capture
the thoughts-related activities, the visual domain captures the
characteristics in visual content to help with high quality
visualization of those brain thoughts. (ii) inspired by the
phenomenon of hemispheric lateralization and the attention
mechanism, we propose a new attention-gated LSTM to em-
phasize the differences between two hemispheres with low
dimensions and measure the importance of different EEG
channels. In this way, we are able to strengthen the capability
of the proposed deep framework in brain representations and
learning towards improved performances for its visualizations.

The rest of the paper is organized as follows. In section II,
we present descriptions of relevant work that use deep learning
models for EEG-based image visualization and classification.
In Section III, we describe the details of our proposed deep
framework for visualizing brain activities into images. In
Section IV, we report our extensive experimental results and
validate the superiority and effectiveness of our proposed
framework, in comparison with the existing state-of-the-arts,
and finally Section V provides concluding remarks and future
work.

II. RELATED WORK

Although the concept of brain-media has never been ex-
plored before, relevant research on EEG-based brain analysis
has been extensive across a number of areas, including brain
science, psychology, bio-engineering, and computer science,
in which brain activities can be recorded using multiple
techniques, including fMRI, EEG, and MEG, whose temporal
and spatial resolutions have allowed computational methods to
decode specific visual stimuli. Before the popularity of deep
learning, Kaneshiro et al. [11] proposed a representational
similarity based linear discriminant analysis framework to
classify visually evoked EEG data according to twelve differ-
ent object categories, and an accuracy of 28.87% was reported
on their proposed dataset, ObjectCategory-EEG dataset. Since
the advent of deep learning models, numerous new research
attempts have been reported to leverage its strength in design-
ing ambitious algorithms to achieve better understanding of
brain activities and reconstructing a perceived visual stimulus
via EEGs. Examples of such efforts can be illustrated by
classification of brain activities via mining of EEGs. Kulas-
ingham et al. [2] used deep belief networks (DBN) and deep
automatic encoders to represent EEGs for detecting special
patterns, and an average precision rate of 86.9% is reported
for the deep belief network and 86.01% for the stacked
autoencoder on their dataset. Yin and Zhang [13] proposed
a single-channel EEG classification method with a deep belief
network, decoding mental loads from EEGs, and an average
classification accuracy of 71% was achieved based on the non-
overlapped training and testing of EEG sequences. Lu et al.
[14] proposed a frequential DBN (FDBN) for the purpose of
classifying the motor imagery. The FDBN is based on three re-
stricted Boltzmann machines (RBMs) stacked with a SoftMax
regression, in which wavelet packet decomposition (WPD)
and fast Fourier transform (FFT) are employed to obtain the
frequency domain representation of the EEG signals. Stober et
al. [15] used convolutional neural networks and an autoencoder
to classify audio-evoked EEG recordings with an accuracy
of 28% over 12 songs. Ogawa et al. [16] used a recurrent
neural network (RNN) to simultaneously input video features
and video viewers’ EEG signals to achieve video classification
based on user preferences. Spampinato et al. [17], used long
short term memory (LSTM) network to learn an EEGs feature
representation based on visual stimuli and constructed a map-
ping relationship from deep learned visual features to EEG
feature representations. Finally, they utilized their proposed
representation of EEG signals for classifying natural images.
Compared with other existing approaches, these deep learning-
based methods have accomplished outstanding classification
results on their dataset, ImageNet-EEG.

Since the work on reconstruction and classification of EEG
data reported by Gogna et al [18], research on visualizing
EEGs becomes active. Schirrmeister et al. [19] reported the
effects of convolutional neural networks (CNNs) on decoding
and visualizing EEGs. They evaluated a large number of
CNNs on an EEG decoding task, and demonstrated that
advances from the field of deep learning, including exponential
linear units and batch normalization, are crucial for achieving
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Fig. 2. Structural illustration of the proposed deep framework.

high decoding accuracies. Tirupattur et al. [20] proposed an
EEG-based deep learning method, ThoughtViz, for visualizing
human thoughts utilizing a GAN-based network. Kavasidis
et al. [12] proposed a framework for generating the visual
stimuli content information through EEG data. By using gen-
erative adversarial networks (GANs) [21] and variable-valued
autoencoder (VAE) [22], they found that EEG data contain
patterns related to visual content, and the content can be used
to generate images that are semantically consistent with the
input visual stimuli. Palazzo et al. [23] used conditional GAN-
based framework [12] to generate visual stimuli through EEG
data.

While these methods have demonstrated the capability of
using deep learning for brain activity visualization and clas-
sification, it suffers from the flowing disadvantages: (i) the
original EEG data or the extracted time-frequency features
based on signal analysis algorithms are often used as the
input only, and some characteristics of human brains have
not been seriously considered, making the existing work on
visualization of EEGs less indicative of actual brain activities;
(ii) the importance of channel-based spatial information has
not been exploited jointly with the information from the brain
side, such as hemispheric lateralization, and hence the spatial
and dynamic correlations embedded inside EEG sequences
are relatively ignored; and finally (iii) the state-of-the-art
Inception score (IS) and the classification accuracy achieved
by Kavasidis et al. and Spampinato et al. [17] are only 5.07

and 82.9%, respectively, leaving a significant scope for further
research and improvement.

To rectify the above weakness and move the existing work
closer to the feasible exploration of the new multimedia
concept: brain-media, we need to resolve two fundamental
issues, which can be highlighted as: (i) significantly improve
the accuracy of detecting those elements that can be visualized
as brain-media out of the brain thoughts corresponding to stim-
ulating images; (ii) significantly improve the quality of such
visualizations and thus the visualized images can be enjoyed as
any other natural images we generally encounter in the existing
multimedia. To this end, we introduce a dually-conditioned
and lateralization-supported GAN framework, where the brain
feature space is combined with representation learning of
visual feature spaces to provide a further assistance for deep
learning of brain EEG sequences and improving the visual-
ization performances. To achieve a seamless integration with
EEG descriptions of brain cognitive responses to the external
stimulation via natural images, we add a new regional atten-
tion gate into the existing LSTM to exploit the hemispheric
lateralization [24] and produce the first condition to support the
proposed deep learning framework. Hemispheric lateralization
refers to the tendency for some neural functions or cognitive
processes to be specialized to the right or the left hemispheres
of human brains [25]. In addition, the attention mechanism,
which allows a deep network to pay attention to only part of
the input information, becomes one of the most powerful and
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Fig. 3. Structural illustration of the proposed bio-inspired deep encoder.

influential ideas in deep learning [26], [27], [28], [29], [30].
As EEGs are channel-based temporal-spatial signal sequences,
some parts of human brains are more deeply involved than
others, leading to the oscillations in EEG signals and hence
creating further spaces for improvement. To the best of our
knowledge, no research has been attempted to integrate jointly
the hemispheric lateralization and the attention mechanism
into a gated structure of the recurrent deep learning model
to extract the region-level information from brain signals.

III. THE PROPOSED BRAIN-MEDIA DEEP FRAMEWORK

Fig. 2 illustrates an overview of our proposed deep frame-
work for visualizing the brain-media elements of the human
thoughts corresponding to the natural image stimulation at the
input, from which it can be seen that we use a lateralization-
inspired LSTM to extract EEG descriptions and generate the
first condition (top-left of Fig. 2), and we use an auto-encoder
to learn data representations and extract visual features across
all the candidate images for stimuli (top-right of Fig. 2) to
generate the second condition.

In general, GAN consists of two networks, including gen-
erator (G) and discriminator (D). While the generator tries
to create a sample from a random noise input (z), the
discriminator checks whether the generator is actually creating
a fake sample or real sample. As the generator is expected
to capture the overall training data distributions and generate
realistic-looking samples, the discriminator would be regularly
uncertain of whether its inputs are real or fake images. To
visualize the image-evoked brain activities and ensure that
such automated visualization can overcome the ambiguity and
variation of the stimuli images brought to the brain activations,
we need to maximize the potentials from both the brain
side and the content side of natural images. To this end, we
propose to generate image samples by both the random noise
vector and the combined description vector, integrated from
the two conditions as shown in Fig. 2, in order to enable
the proposed brain-media deep framework to achieve the best
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Fig. 4. Structural illustration of the proposed attention-gated LSTM cell.

possible visualization of the captured brain activities in terms
of both quality and accuracy.

To produce the first condition and exploit the EEG descrip-
tion of brain activities in the process of adversarial learning,
we design a stack of n lateralization-inspired and bi-directional
LSTM layers as shown in Fig. 3. Given the input e from all
channels at time t, specifically, an additional gate, referred to
as regional attention gate, is created to work together with
the existing three gates, and hence their state values , i.e. the
regional attention gate Γt

ra, the update gate Γt
u, the forget

gate Γt
f , and the output gate Γt

o, which are represented by
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colorful boxes in the attention-gated LSTM cell in Fig. 4, can
be calculated from the raw EEG brain signals E = [ei]

lch
i=1,

where i ∈ [1, lch = 128] is the index for EEG channels, lch
is the number of EEG channels, and the previous layer output
at−1 is determined according to the following equation:

Γt
ra

Γt
f

Γt
u

Γt
o

 = g


Wra Ua 0

0 Uf Wf

0 Uu Wu

0 Uo Wo



[(

Et
[l],j −Et

[r],j

)
Et

[m]
T
]

at−1

Γt
ra



+ g


bra

bf

bu

bo

 (1)

where, for k ∈ {ra, f, u, o}, Wk is the weight matrix mapping
the layer input to the four gates, Uk is the weight matrix
connecting the previous cell output state to the four gates,
and bk is the bias vector. The function g(.) is designed as
ReLU activation function for Γt

ra and element-wise sigmoid
for Γt

f , Γt
u, and Γt

o, respectively. To achieve the desired
lateralization effect, the state of the regional attention gate
Γt
ra is fed through the three gates. To achieve the desired

lateralization effect, Γra splits the EEG data into three groups,
including the left hemisphere, the right hemisphere, and the
central part. By denoting the left hemisphere group, the right
hemisphere group, and the central group as, E[l], E[r], and
E[m], respectively, each channel ei can be linked to one
group based on its corresponding electrode physical location.
In addition, each channel in the left hemisphere group has
a corresponding channel in the right hemisphere group. Γra

combines the difference, (Et
[l],j−E

t
[r],j), and the central group,

E[m], into one variable, and then passes it to the attention
part as an input, where j ∈ [1, lg] is the index for the left
hemisphere, the right hemisphere, and lg is the number of
channels linked to the left hemisphere or the right hemisphere.
To optimize the process of adding the regional attention-driven
mechanism, we propose a soft regional attention gate, where
the input EEG signals of different channels are fully connected
with the nodes in the gate. As a result, the size of Wra

depends on the number of channels and the number of nodes
in the regional attention gate. Based on the results of (1), the
cell output state ct and the layer output at (both the forward
and the backward outputs) can be calculated from the state of
the regional attention gate Γt

ra and the previous layer output
at−1, details of which are given below:

ct = Γt
f ∗ ct−1 + Γt

u ∗ (

Candidate for replacing the memory cell︷ ︸︸ ︷
tanh(Uca

t−1 + WcΓ
t
ra + bc)) (2)

at = Γt
o ∗ tanh(ct) (3)

where Wc is the weight matrix, mapping the layer input to
the candidate for replacing the memory cell. While Uc is
the weight matrix connecting the previous cell output state
to the candidate for replacing the memory cell, bc is a bias
vector regulating the balance of strength between (Uc and
(Wc, and the function tanh(.) indicates a hyperbolic tangent.
When other layers are present, the output of the first layer is
provided as an input to the second layer and so on. The final
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Fig. 5. Structural illustration of the proposed dually-conditioned and lateral-
ization supported GAN.

output of the deepest LSTM layer is a vector of all outputs,
represented by Y = [yt]

ls
t=1. At each time of iteration t, yt

can be calculated according to the standard LSTM equation
[31]. For our proposed brain-media deep framework, however,
only the last element of the output vector, yls , is taking into
account as a candidate to represent the first condition.

For visualization, the generator network G(z|y,h) is trained
in a conditional GAN framework to map the random inputs
from a pz(z) noise distribution and the combined-conditional
vector, including EEG descriptions (y) and the visual features
(h), to a target image distribution pdata(x) as seen in Fig. 2.
We train both the generator and the discriminator at the same
time in a minimax gaming environment. While the generator
attempts to maximize the probability of making the discrimi-
nator mistake its inputs pG(z|y,h) as real, the discriminator
attempts to maximize the probability of associating the correct
labels, i.e. real samples to pdata(x) and fake samples to
pG(z|y,h). The overall objective function V(D,G) can be
calculated according to the following equation:

min
G

max
D

V (D,G) =Ex∈pdata
[logD(x|y,h)] +

Ez∈pz [log (1−D(G(z|y,h)|y,h))]
(4)

The discriminator loss function LD and the generator loss
function LG are implemented using a hinge loss, where we
modify the generator loss function by adding the constrictive
loss to the adversarial loss. To justify our choice, we have
also investigated using Wasserstein GAN loss via empirical
studies. While the inception score (IS) achieved by WGAN
loss is 6.59, the IS value becomes 6.64 by using hinge loss.
Further experiments reveal that, by using either the hinge loss
or the WGAN loss, our proposed framework still outperforms
the compared benchmarks.

Precisely, an image generated by a generator network is
passed as an input to an accompanied constructive loss that
evaluates the discrepancy between the generation results and
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TABLE I
THE EXPERIMENTAL PARAMETERS

Parameters/Dataset ImageNet-EEG ObjectCategory-EEG
No. of classes 40 6
No. of stimuli per class 50 12
Total No. of stimuli 2000 72
No. of trails per subject per stimuli 1 72
No. of subjects 6 10
Time for each stimuli 500ms 500ms

the ground truth. Details of the discriminator and the generator
loss functions, LD and LG, can be described as follows

LD =− E[min(0,−1 +D(x|y,h))]

− E[min(0,−1−D(G(z)|y,h))] (5)

LG = −α E[D(z|y,h)] + β `1(pG(z|y,h), pdata(x)) (6)

where α and β are the two weighting coefficients balancing
the contribution of the adversarial and constrictive losses.

Fig.5 is a structural illustration of the proposed adversarial
image generation network, including the generator G and
discriminator D , which are implemented as two convolutional
neural networks inspired by the DCGAN [32]. As seen in the
generator network G, the combined-conditional vector (y,h)
is concatenated with the random noise vector z and a series
of deconvolutions are designed to upsample the concatenated
vector to an output image. For the discriminator network D,
it starts by receiving an image, either real or generated image,
concatenated with the condition vector h associated with the
input image. As opposed to the G network, the D network
performs a series of convolutions, each of which reduces the
size of the feature map spatial dimensions, and then appends
the conditional vector y, associated with the input image,
to the last convolutional layer. Finally, the discriminator also
calculates the output probabilities.

IV. EVALUATIONS AND EXPERIMENTAL RESULT
ANALYSIS

To evaluate our proposed brain-media deep framework, we
have carried out extensive experiments and assessed the brain-
media visualization performances in terms of both accuracy
and quality. For visualization accuracy, we apply the attention-
gated LSTM encoder, part of our proposed deep framework, to
classify the EEG descriptions of brain signals into a category
of candidate images for stimuli and see if the classified
category remains the same as that of the input image or
not. The precision rate of such a classification is then used
to measure the accuracy of the proposed visualization. To
evaluate the quality of the proposed brain-media visualization,
we primarily inspect the generated output images and assess
their quality on subjective perception basis in the same way
as that for the existing multimedia (images), although some
quantified testing is also carried out via Inception score (IS)
measurements.

A. Datasets

To evaluate our proposed brain-media visualization and
analyze the achieved experimental results on a comparative

basis against the existing efforts, we adopt two standard
datasets for EEG-based brain activity descriptions: ImageNet-
EEG [17] and ObjectCategory-EEG [11], in order to reduce
the risk of overfitting to a particular dataset and limiting the
generality of our research.

ImageNet-EEG dataset is a publicly available EEG dataset
for brain activity viualization and classification prepared by
Spampinato et al. [17], which is gathered utilizing a 128-
channel cap with active, low-impedance electrodes (acti-
CAP 128Ch). It incorporates the EEG signals of six sub-
jects, one female and five male, produced by requesting
them to look at the visual stimuli, which are images cho-
sen from a subset of ImageNet (ILSVRC) [33]. It in-
corporates 40 classes, including “dog”, “cat”, “butterfly”,
“sorrel”, “capuchin”, “elephant”, “panda”, “fish”, “airliner”,
“broom”, “canoe”, “phone”, “mug”, “convertible”, “com-
puter”, “watch”, “guitar”, “locomotive”, “espresso”, “chair”,
“golf”, “piano”, “iron”, “jack-o′-lantern”, “mailbag”, “mis-
sile”, “mitten”, “bike”, “tent”, “pajama”, “parachute”, “pool”,
“radio”, “camera”, “gun”, “shoe”, “banana”, “pizza”, “daisy”
and “bolete” (fungus), and each class has 50 images. Dur-
ing the subjective experiment, each image has appeared on
the computer screen for 500 ms. Table I summarizes the
experimental parameters. The sampling frequency and data
resolutions are set to 1kHz and 16 bits, respectively.

The EEG data in ImageNet-EEG has been filtered by a notch
filter (49-51 Hz) and a second-order band-pass Butterworth
filter (low cut-off frequency 14 Hz, high cut-off frequency 71
Hz). Therefore, the recorded signals only included the Beta
(15-31 Hz) and Gamma (32-70 Hz) rhythm bands. As known,
these bands have information about the cognitive process and
perceptions [34].

The second EEG dataset we used to evaluate the effective-
ness of our proposed brain-media visualization is an open-
access dataset compiled at Stanford University by Kaneshiro
et al. [11]. ObjectCategory-EEG is collected using unshielded
128-channel EGI HCGSN 110 nets, it includes the EEG
signals of 10 subjects, aged 21 to 57 years (3 female),
produced by asking them to look at the visual stimuli, which
are images selected from a subset of the 92-image set used in
other representational similarity analysis (RSA) studies [35],
[36]. ObjectCategory-EEG consists of 6 classes, including
“human body (HB)”, “human face (HF)”, “animal body (AB)”,
“animal face (AF)”, “fruit vegetable (FV)”, and “inanimate
object (IO)”, and each class has 12 images. For EEG signal
collection, each image was shown on the computer screen 12
times at a random order for a total of 864 trials per recording.
Each trial consisted of a single image shown on screen for
500 ms, and the subject completed two experimental sessions,
each of which contains three blocks of 864 trials, resulting
in a total of 5184 trials per subject. Table I summarizes the
experimental parameters.

The EEG data in ObjectCategory-EEG has been filtered
by a high-pass fourth-order Butterworth filter for removing
frequency content below 1 Hz and a low-pass eighth-order
Chebyshev Type I filter for removing frequencies above 25
Hz. The sampling frequency was set to 1kHz with a range
of 24 bits. Across the recordings in the ObjectCategory-EEG
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dataset, preprocessing is applied to achieve three effects: (i)
interpolation of approximately five channels; (ii) removal of 0-
2 trials for every image; and (iii) removal of four independent
components.

B. Experimental Settings and Training Details
As shown in Fig. 2, the size of all layers in the attention-

gated LSTM is set to 68, including those subsequent non-
linear layers, and there are two layers in the stacked BiLSTM
(n = 2). The iteration limit is set to 2500, and the batch size is
set to 440. For the autoencoder, the encoder network consists
of four deconvolutional layers, which takes an input image and
return the image representations, i.e. the visual features. On the
other hand, the decoder network consists of five convolutional
layers, which takes the image representation as the input and
tries to return the same image as an output. The number of
epochs is set to 200, and the batch size is set to 128.

For those networks inside the GAN, as seen in Fig. 5,
the generator network takes a 384-concatenated-dimensional
vector as the input, including 128-dimensional random noise
vector z and a combined-conditional vector consists of 128-
dimensional visual features h and 128-dimensional propped
encoder output y. It reshapes this input vector to a 4-
dimensional vector and then feeds it to a sequence of five
layers, each consists of three operations, including decon-
volutions, Batch Normalization, and ReLU operation. This
sequence of operations doubles the spatial dimensions of the
input vector while halves its number of channels before the
last one, which outputs a 128× 128× 3 RGB colored image
squashed between values of −1 and 1 through the tanh

function. On the other hand, the discriminator network takes a
concatenated input which consists of 128×128×3 images and
their associated 128-dimensional autoencoder output h. Sim-
ilarly, the input is also reshaped into a 4-dimensional vector
and then fed into a sequence of five layers, each of which
consists of three operations, including convolutions, Batch
Normalization, and Leaky ReLU operation. This sequence of
operations halves the spatial dimensions of the input while
doubles its number of channels, and the output of the last
convolutional layer is concatenated with its associated 128-
dimensional EEG descriptions y. The last layer is flattened
and then fed into a single sigmoid output.

Training for deep learning based generative adversarial
models is a challenging problem for two reasons: i) balancing
the generator and discriminator; ii) overfitting due to the
size of the dataset. For the first reason, we have investigated
the two-timescale update rule (TTUR) technique [37] for
unbalancing the learning rate between the generator and the
discriminator updates. As reported by Goodfellow et al [38],
TTUR is more effective than other approaches, such as spectral
normalization, in stabling the training of GANs, and thus we
propose to use the TTUR technique that provides different
learning rates for the discriminator and the generator, in order
to compensate for the slow learning rate of the discriminator.
While we appreciate the point that there may exist many other
state of the arts, our choice achieves additional advantages that:
(a) fair comparisons with the existing benchmarks can be eas-
ily implemented by disabling the self-attention layer; and (b)

TABLE II
COMPARATIVE CLASSIFICATION RESULTS BETWEEN OUR PROPOSED

ENCODER AND THE EXISTING BENCHMARKS, INCLUDING RNN-BASED
METHOD, SIAMESE NETWORK, MULTIMODEL NETWORK, COGNINET, AND

RS-LDA.

Models Accuracy
Proposed encoder 99.1%
RNN-based model [17] 82.9%
Siamese network [40] 93.7%
Multimodal network [41] 94.1%
CogniNet [42] 89.6%
RS-LDA [11] 13.0%

SAGAN is essentially originated from DCGAN, which covers
most of the state-of-the-art research on GANs, providing
wider comparability and compatibility with the main stream
of research on GANs. Specifically, we set the discriminator
learning rate as 0.0004, and the generator learning rate at
0.0001, making it possible to utilize fewer generator steps for
every single discriminator step. For the second reason, we use
the largest dataset, ImageNet-EEG, to provide sufficient space
for us to investigate the overfitting problem. The number of
images with the associated EEG recordings, however, is very
low with 50 recording per class, making either the generator
or the discriminator to overfit if we directly train these two
networks on it. As a result, we train the proposed GAN in
two phases. In the first phase, we train the proposed deep
framework using only images from ImageNet [33] with no
EEGs for 100 epochs. During this phase, the attention-gated
LSTM conditional vector is set to zero. Then in the second
phase, we re-trained the models on the images with EEGs
for 50 more epochs. During the training process, data is
augmented by resizing images at 143× 134 pixels, extracting
random 128 × 128, and flipping images horizontally with a
chance of 50%. Our deep framework is implemented on a
Teslar P100 GPU.

For benchmarking purposes, the proposed brain-media vi-
sualization framework is compared with the EEG-based image
generation methods [12], [23], which are the most recent
deep learning methods conditioned by brain signals on the
ImageNet-EEG dataset. In this research, we utilize the Incep-
tion score (IS) [39] that is a popular metric for judging the
GANs output images by analyzing two conditions simultane-
ously, i.e. (i) the images should have varieties of meaningful
content, and (ii) the image quality should be perceptually high,
the same as those natural images. If both conditions are true,
the floating-point score will be large. If either or both are false,
the floating-point score will be small.

C. Assessment of Visualization Accuracy

To evaluate the visualization accuracy of our proposed deep
framework, we carry out experiments to test the EEG-based
classification performances of our proposed framework in
comparison with the existing work. Such a design is based
on the fact that our proposed deep framework relies on the
EEG description and its corresponding deep understanding
of the brain responses to the stimulation image to visualize
what is happening inside human brains, and hence the clas-
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TABLE III
FURTHER EXPERIMENTAL COMPARISONS BETWEEN OUR PROPOSED

ENCODER AND RS-LDA.

Model/No. of classes 6-classes 2-classes
Faces vs objects

Proposed encoder 61.10% 89.06%
RS-LDA [11] 40.68% 81.06%

sification results achieved by the deep framework indicates
which category the visualized image belongs to, providing an
indirect but logic measurement of the visualization accuracy.
We use two publicly available datasets, ImageNet-EEG [17]
and ObjectCategory-EEG [11], in order to reduce the risk of
overfitting to any particular dataset and limiting the generality
of our research. While the ImageNet-EEG received critiques
recently from Purdue scholars [43], we feel that inclusion of
this data set in our experiments still remains worthwhile until
the critique is positively responded by the original authors and
validated by the research communities. Table I summarizes
the experimental parameters, and Table II summarizes the
experimental results in terms of the classification precisions
for our proposed attention-gated LSTM encoder and 5 bench-
marks representing the existing state of the arts, including the
RNN-based method [17], Siamese network [40], multimodal
network [41], and CogniNet [42], and the RS-LDA method
[11]. As seen, while the precision rate accomplished by our
proposed encoder network is 98.4%, the RNN-based method,
Siamese network, multimodal network, CogniNet, and RS-
LDA compared are 82.9%, 93.7%, 94.1%, 89.6% and 13.0%,
respectively. As a result, such significant improvement on
classification precision achieved by our proposed deep encoder
validates our contribution in developing the attention-gated
LSTM and exploitation of lateralization for the encoding
model design.

To quantify the contribution of integrating the regional
attention gate in our proposed attention-gated LSTM deep
encoder, we further carried out experiments to explore the
effectiveness of different configurations made by proposed en-
coder. While the precision rate accomplished by the proposed
encoder network without the regional attention gate is 95.3%,
the precision rate accomplished our proposed attention-gated
LSTM encoder is 99.1%.

To enable comparative assessment and result analysis
against the existing benchmarks, we carried out further ex-
periments to validate the effectiveness of our encoder network
for EEG-based classification on ObjectCategory-EEG dataset
[11]. In this experiment, we have used the same experiment
set up as the existing work [11].

Table III summarizes the experimental results in terms of
the classification precisions for our proposed encoder and the
RS-LDA method [11]. As seen, while the precision rates ac-
complished by our proposed encoder are 61.10% and 89.06%,
the RS-LDA compared are 40.68% and 81.06% on six-classes
and two-classes, respectively. From these results, we claim: (i)
the generality of our proposed attention-gated LSTM encoder
is validated; (ii) the generalization capability of our proposed
encoder is better than that of RS-LDA [11], supported by the
better results achieved upon both data sets, ObjectCategory-

HB HF AB AF FV IO
HB 50.02 6.60 6.60 15.60 6.60 14.60
HF 0.88 95.49 0.88 1.88 0.00 0.88
AB 4.87 4.87 60.63 14.87 2.87 11.87
AF 9.77 7.77 7.77 62.15 6.77 5.77
FV 10.01 7.01 13.01 7.01 43.96 19.01
IO 9.98 4.98 5.98 4.98 14.98 59.11

Fig. 6. Illustration of confusion matrix for our proposed encoder.

TABLE IV
COMPARATIVE ASSESSMENT OF THE INCEPTION SCORE BETWEEN THE

PROPOSED DEEP FRAMEWORK AND THE EXISTING BENCHMARKS.

Model Inception score
proposed 6.64
EEG-based GAN [23] 5.07
brain2image GAN [12] 5.07
brain2image VAE [12] 4.49

EEG and ImageNet-EEG; (iii) the improvement achieved by
our proposed has almost the same ratio upon both data sets,
which is about 20%.

For the convenience of further analysis and comparative
investigation, Fig.6 presents the confusion matrix of each
category for ObjectCategory-EEG. As the matrix diagonal
represents the highest value in each row of the confusion
matrix, labels predicted by the proposed encoder were most
often the correct class labels. As seen, while the classification
accuracy of the “human face (HF)” category is better than
others, with 95.49% of trials being labeled correctly, the
lower right portion of the confusion matrix, such as the “fruit
vegetable (FV)” and “inanimate object (IO)”, show notable
confusion. These findings are consistent with what is reported
in the existing work [11].

D. Testing on Visualization Quality

To evaluate the quality of our proposed brain-media visual-
ization, we primarily apply our deep framework to ImageNet-
EEG dataset and compare our visualized output images with
those produced by the existing efforts [12], [23] with the same
experimental settings.

To quantify the contributions of our deep framework to
the quality of brain-media visualizations, we also computed
the Inception Score (IS) on 50000 generated sample images,
i.e, each class generates a sample of 1250 images. Table IV
summarizes the experimental results in terms of the Inception
scores for our proposed deep framework and the existing state-
of-the-arts, including the EEG-based GAN [23], brain2image
GAN [12], and brain2image VAE [12]. As seen, while the
Inception Score achieved by our proposed deep framework
is 5.89, the Inception score achieved by both EEG-based
GAN and brain2image GAN is 5.07, and the Inception score
achieved by brain2image VAE is 4.49.

To quantify the contribution of our deep framework, a fur-
ther analysis is conducted. In previous work [12], [23], high-
quality results for three of the ImageNet-EEG visual classes,
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(a) (b) (c)

Fig. 7. Illustration of visualization samples for the classes of “jack-o′-lantern”, “panda”, and “airliner” achieved by: (a) brain2image VAE, (b) brain2image
GAN, and (c) our proposed brain-media deep framework.

including “jack-o′-lantern”, “panda”, and “airliner”, and low-
quality results for other three of the ImageNet-EEG visual
classes, including “banana”, “capuchin”, and “bolete” , are
reported and illustrated for visual inspections and subjective
assessments. We follow the same strategy and demonstrate
two sets of generated samples by our proposed and the 3
existing benchmarks in Fig. 7 and Fig. 8, in which the two
benchmarks, brain2image GAN and EEG-based GAN, are

from the same authors and the samples generated by these
two benchmarks are the same too. Consequently, the following
observations can be made: (i) the quality of the visual content
across the compared models is different; (ii) our proposed deep
framework is able to translate the EEG descriptions into a
meaningful and class-dependent images than other compared
models; and (iii) the visual quality of our generated images
on all compared classes are better that of the compared three
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(a) (b)

Fig. 8. Illustration of the visualization samples for the classes of “banana”, “capuchin”, and “bolete” achieved by: (a) brain2image GAN and EEG-based
GAN, and (b) Our proposed brain-media deep framework.

benchmarks. While the first and the third observations validate
our contribution to the quality improvement upon the proposed
GAN model in generating images, the second observation
validates our contribution in introducing the new concept of
“brain-media” and illustrates the potential for developing it
into feasible research directions, where semantic elements
of the brain thoughts can be captured and visualized into
enjoyable multimedia content by EEG-based deep learning
models.

As indicated by the existing research across areas of brain
science, psychology, and neural computations etc, finally, the
primary means for interfacing with human brains at present

TABLE V
COMPARATIVE ASSESSMENT OF THE PROPOSED FRAMEWORK UNDER

DIFFERENT CONFIGURATIONS.

Training of the proposed framework Testing of the proposed framework Inception Score
Dually conditioned Dually conditioned 6.64
Dually conditioned Brain feature space only 6.39
Brain feature space only Brain feature space only 6.34

are two approaches, via EEG or fMRI [44], [45]. In other
words, brain responses to the external stimuli are primarily
represented either by EEG sequences or by fMRIs. To this
end, our proposed model is essentially developed to deeply
learn and extract, out of those EEG sequences, the brain
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responding activities to the external stimulations of the input
image. When we classify EEGs via our proposed attention-
gated LSTM encoder, for example, we are essentially trying to
interpret which category of the input image the brain activity is
responding to. When we visualize the EEGs via the proposed
GAN model, equally, we are trying to visualize the brain
activities responding to the input stimuli image. Consequently,
the visualized image becomes a form of our introduced brain-
media as long as: (a) its quality is good enough to be enjoyed
in the same way as that of any natural image, and (b) its
content is meaningful to human understandings and percep-
tions. To support the statement further, we carry out additional
ablation studies and report the results in Table V. As seen from
the results of our ablation studies, EEG sequences provide
primary support for learning and analyzing brain activities
responding to natural image stimulations. While the additional
condition added from the visual feature space only provides
marginal support for brain activity analysis as suggested by
the small difference in IS scores, the visualization results
indicate that the additional condition plays a significant role
in improving the quality of the generated output image.

V. CONCLUSIONS

By integrating the brain feature space and visual feature
space together, we have described in this paper a novel dual-
conditioned and GAN-based deep framework for brain-media
visualization, exploring the new concept of brain-media and
providing a good potential to turn this new concept into a new
member in the family of multimedia. Our proposed framework
provides an improved solution for the problem that, given
brain activities stimulated by an image, we should be able
to learn more compact and class-dependent descriptions of
the EEG signals and visualize what is responded by human
brains, including those parts of brain activities containing
semantic concepts such as objects and scenes etc. which can be
visualized into meaningful brain-media. As the sensitivity level
across different locations in generating EEG signals remains
different, we introduce a regional attention gate into the
existing LSTM and hence enable the regional attention gate to
extract the region-level information to preserve and emphasize
the hemispheric lateralization for neural functions or cognitive
processes of human brains. In addition, the added regional
attention gate also measures and seizes the importance of dif-
ferent EEG channels via the integrated channel-level attention
mechanism, and hence drive the proposed brain-media deep
framework to capture the dynamic correlations hidden in the
EEG sequences. Extensive experiments on ObjectCategory-
EEG and ImageNet-EEG, the most challenging EEG dataset
publicly available for brain activity analysis, validate that
our framework outperforms the existing state-of-the-arts un-
der various contexts and experimental set ups. Further, our
research has produced substantial evidences to support that
the information captured straightforwardly from human brains
has the potential to: (i) enable the developed machine learning
models to make better and more human-like understandings of
the cognitive process inside human brains; (ii) convey vision-
related information towards multimedia description of brain

responses to the external stimulations; and (iii) reconstruct the
brain-perceived multimedia content via EEG representations
and their deep learnings.

While the concept of “brain-media” we introduced in this
paper has the potential of enabling computers to understand
and interpret brain activities, it is not the same as “reading
human minds or thoughts”. Essentially, we are trying to cap-
ture those brain activities and thoughts that have meaningful
semantics and can be visualized into enjoyable multimedia
content, i.e. images or videos. In other words, not all human
thoughts can be turned into brain-media, for which one typical
example of meaningful semantics is those dreams that contain
events and scenes. Due to the fact that human brain activities
are enormously complicated, however, current research has
to be limited to the environment that brain activities are
stimulated via external images or graphics patterns in order
to make the process manageable. It can be envisaged that,
in the future, research upon the new concept of brain-media
can be carried out in such a way that human brains can be
monitored by computers to capture those meaningful pieces
and visualized into brain-media without any external stimuli.
As a result, the current research under external stimuli can be
viewed as providing guidelines for the above objective similar
to the scenario of training deep learning frameworks.

Finally, a range of further research can be identified to
push forward the concept of brain-media and moving us to
the stage that we are able to see the imaginations inside
human brains, examples of which can be summarized as: (i)
continuously monitoring human brains without any external
stimulation and visualize the internal activities and thoughts
that contain meaningful semantic multimedia concepts; (ii)
designing external stimuli with specified semantics for EEG-
based recognition and detection, and hence providing more
challenging learning environment in order to research new
deep learning models.
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