
Expert Systems with Applications 42 (2015) 5658–5667
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Visual orientation inhomogeneity based scale-invariant feature
transform
http://dx.doi.org/10.1016/j.eswa.2015.01.012
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: csshzhong@szu.edu.cn (S.-h. Zhong), csyliu@comp.polyu.edu.

hk (Y. Liu), qingcai.chen@hitsz.edu.cn (Q.-c. Chen).
Sheng-hua Zhong a,b, Yan Liu c,⇑, Qing-cai Chen d

a College of Computer Science & Software Engineering, Shen Zhen University, Shen Zhen, Guang Dong, PR China
b Department of Psychological & Brain Science, The Johns Hopkins University, Baltimore, MD 21218-2686, USA
c Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
d Shenzhen Graduate School, Harbin Institute of Technology, Shen Zhen, Guang Dong, PR China
a r t i c l e i n f o

Article history:
Available online 16 January 2015

Keywords:
Orientation inhomogeneity
Real-world distribution
Scale-invariant feature transform
Least discriminability
a b s t r a c t

Scale-invariant feature transform (SIFT) is an algorithm to detect and describe local features in images. In
the last fifteen years, SIFT plays a very important role in multimedia content analysis, such as image clas-
sification and retrieval, because of its attractive character on invariance. This paper intends to explore a
new path for SIFT research by making use of the findings from neuroscience. We propose a more efficient
and compact scale-invariant feature detector and descriptor by simulating visual orientation inhomo-
geneity in human system. We validate that visual orientation inhomogeneity SIFT (V-SIFT) can achieve
better or at least comparable performance with less computation resource and time cost in various com-
puter vision tasks under real world conditions, such as image matching and object recognition. This work
also illuminates a wider range of opportunities for integrating the inhomogeneity of visual orientation
with other local position-dependent detectors and descriptors.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Inspired by the highly discriminatory property of local position-
dependent gradient orientation histograms, researchers have pro-
posed a variety of means to detect and describe local features in
images, such as scale-invariant feature transform (SIFT) (Lowe,
1999, 2004), histogram of oriented gradients (HOG) (Dalal &
Triggs, 2005), gradient location and orientation histogram
(GLOH) (Mikolajczyk & Schmid, 2005), and speeded up robust fea-
ture (SURF) (Bay, Ess, Tuytelaars, & Gool, 2008). As we known, the
dimension of the image feature descriptor has an impact on the
running time. The lower dimensions indicate faster interest point
matching. However, lower dimensional feature vectors tend to be
less distinctive in general. So our goal is to develop both a detector
and descriptor that, in comparison to the state-of-the-art, is fast to
compute without sacrificing much performance (Bay et al., 2008).

From the research in neuroscience (Girshick, Landy, &
Simoncelli, 2011), we know the orientation perception of human
is inhomogeneous. Neuroscientists measured the performance in
several orientation-estimation tasks and found that orientation
discriminability in human observation is worst at oblique angles
and best at cardinals (horizontal and vertical). They pursued the
physiological instantiation of this phenomenon and found that
the non-uniformities in the representation of orientation in the
V1 population contribute to non-uniformities in perceptual dis-
criminability. Specifically, a variety of measurements have shown
that cardinal orientation is represented by a disproportionately
large fraction of V1 neurons, and that those neurons also tend to
have narrower tuning curves (Li, Peterson, & Freeman, 2003).

Although we know the property and the physiological evidence
of human’s orientation perception, we do not know whether this
property is useful and helpful to human’s visual tasks or it is only
a limitation of human’s perception. In this paper, we will investi-
gate the real-world orientation distribution in different semanti-
cally organized categories. Then, we will provide a human-like
feature detector and descriptor by drawing lessons from the
orientation inhomogeneity of human visual perception. Unlike
the existing standard SIFT algorithm or other detectors and
descriptors, the proposed V-SIFT detects, preserves and processes
the non-uniformly information from different visual orientation
in each stage. The information from cardinals (horizontal and ver-
tical) is retained, but the information from the least discriminatory
orientation (oblique orientation) is ignored in our proposed V-SIFT.

The remainder of this paper is organized as follows. Section 2
reviews the related work of the SIFT algorithm. Section 3 details
three stages in the proposed visual orientation inhomogeneity SIFT
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Fig. 1. Sample images from the Urban and Natural Scene dataset.

Fig. 2. Average distribution of oriented edges in eight categories. The cardinal orientation especially 90�, 180�, 270� predominate in all categories.

Table 1
Magnitude proportion of cardinal vs. oblique orientation. A paired t-test is used to determine the significance of a difference between the cardinal orientation angles vs. oblique
orientation angles.

Category Orientation Mean ± SEM P Value Category Orientation Mean ± SEM P Value

Coast Cardinal 0.6999 ± 0.00406 <0.0001 Mountain Cardinal 0.5436 ± 0.00228 <0.0001
Oblique 0.3001 ± 0.00406 Oblique 0.4564 ± 0.00228

Forest Cardinal 0.5399 ± 0.00407 <0.0001 Open country Cardinal 0.5718 ± 0.00280 <0.0001
Oblique 0.4601 ± 0.00407 Oblique 0.4282 ± 0.00280

Highway Cardinal 0.6564 ± 0.00532 <0.0001 Street Cardinal 0.6255 ± 0.00335 <0.0001
Oblique 0.3436 ± 0.00532 Oblique 0.3745 ± 0.00335

City center Cardinal 0.7539 ± 0.00487 <0.0001 Tall building Cardinal 0.7027 ± 0.00505 <0.0001
Oblique 0.2461 ± 0.00487 Oblique 0.2973 ± 0.00505
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(V-SIFT) algorithm. Section 4 provides the experimental results from
a comparison between V-SIFT and standard SIFT on feature detection
and matching experiments. In addition, we demonstrate the perfor-
mance for object classification task based on these features detectors
and describers. Finally, Section 5 concludes this paper and outlines
the future work.
2. Related work on SIFT

Scale-invariant feature transform is an algorithm to detect and
describe local features in images developed by Lowe (1999, 2004).
The SIFT descriptor is invariant to translations, rotations and scal-
ing transformations in the image domain, and it is robust to mod-
erate perspective transformations and illumination variations.
The standard SIFT algorithm firstly detects interest points by
searching for the scale-space extrema of differences-of-Gaussians
(DoG) within a difference-of-Gaussians pyramid. Then the posi-
tion-dependent histograms of local gradient directions around
the interest points are statistically accumulated as the SIFT
descriptor. In the end, the SIFT descriptor is utilized to match the
corresponding interest points between different images.
Experimentally, the SIFT algorithm has been proven to be very use-
ful in practice for image matching and object recognition under
real-world conditions, including image copy detection (Ling, Yan,
Zou, Liu, & Feng, 2013), multi-object recognition (Kim, Rho, &
Hwang, 2012), image stitching (Brown & Lowe, 2007), neurosur-
gery (Qian, Hui, & Gao, 2013), human action recognition (Liu,
Shao, & Rockett, 2013), video tracking (Saeedi, Lawrence, & Lowe,
2006), and so on.



Fig. 4. V-SIFT orientation histogram with 24 bins and 10 degrees/bin.
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Based on the standard SIFT, some extensional work have been
proposed and applied in different tasks. Ke and Sukthankar used
PCA to normalize gradient patch instead of histograms, and the
proposed PCA-SIFT demonstrated distinctive and robust to some
image deformations (Ke & Sukthankar, 2004). Unfortunately, their
process of extracting features is slow. Burghouts and Geusebroek
constructed a set of color SIFT descriptors by different colour gra-
dients that are invariant to different combinations of local intensity
level, shadows, shading and highlights (Burghouts & Geusebroek,
2009). By computing the position-dependent histograms over local
spatio-temporal neighbourhoods of either spatio-temporal gradi-
ent vectors, the SIFT descriptor has been generalized from 2-D spa-
tial images to 2+1-D spatio-temporal video by Laptev and
Lindeberg (2004). By computing the SIFT descriptor over dense
grids in the image domain accompanied with a clustering stage,
Dense SIFT was proposed and combined with a bag-of-words
model for multimedia content analysis task (Bosch, Zisserman, &
Munoz, 2006). It demonstrated significant performance improve-
ment in scene classification and image retrieval. Bay et al. sped
up robust features (SURF) and used integral images for image con-
volutions and Fast-Hessian detector (Bay et al., 2008). Their experi-
ments revealed that the SURF is faster and better than its
predecessor. Recently, affine_SIFT (ASIFT) extended the standard
SIFT algorithm to a fully affine invariant device. It simulated the
scale and the camera optical direction, and normalized the rotation
and the translation (Morel & Yu, 2009). Perspective scale invariant
feature transform (PSIFT) is proposed by using homographic trans-
formation to simulate perspective distortion (Zhu, Wang, Yuan, &
Yan, 2013). PSIFT outperforms other local state-of-the-art methods
when images suffer severe perspective distortions.

Those SIFT related algorithms all take advantage of the highly
discriminatory property in gradient orientation histograms. But
as far as we know, no existing algorithm focuses on the difference
in orientation, such as which orientation has the most discrim-
inatory information and which possesses the least. In this paper,
we propose the V-SIFT, a visual orientation inhomogeneity based
SIFT algorithm without least discriminatory orientation in human
visual perception. This work is the extensional work of our confer-
ence paper (Zhong, Liu, & Wu, 2012).
3. Analysis of real world orientation distribution

Girshick et al. found that humans exploit perception inhomo-
geneities when making judgments about visual orientation
(Girshick et al., 2011). What is the underlying reason for the aniso-
tropy of orientation discriminability? Is it based on the prevalence
(a) Standard SIFT

Fig. 3. Maxima and minima are detected by comparing a pixel (marked with X) to it
neighbours. (b) V-SIFT comparing 14 neighbours.
of vertical and horizontal orientation angles in the real world
environment? Or is it due to the limitation of orientation percep-
tion of human?

Although the former assumption is supported by most of
researches in psychology (Girshick et al., 2011; Schaaf & Hateren,
1996), there is not enough analysis of the environmental orienta-
tion in real-world images. In existing work, most of datasets only
include limited images with specific categories, such as: woods.
In this paper, a standard dataset called Urban and Natural Scene
dataset (Oliva & Torralba, 2001) is utilized to statistically analyze
the orientation distribution in environment. This dataset is com-
posed of 2688 authentic images with eight semantically organized
categories: 360 images of ‘‘Coast,’’ 328 images of ‘‘Forest,’’ 260
images of ‘‘Highway,’’ 308 images of ‘‘City center,’’ 374 images of
‘‘Mountain,’’ 410 images of ‘‘Open country,’’ 292 images of
‘‘Street,’’ and 356 images of ‘‘Tall building.’’ All of the images are
in color, in jpeg format, and are 256 � 256 pixels. Sample images
in this dataset are shown in Fig. 1.

We define the environmental orientation distribution as the
probability distribution over local orientation with different spatial
scale. First, we use the Canny edge detector (Canny, 1986) to obtain
the edge map of every image. The threshold of the Canny detector
is set according to the default setting of Matlab 2014a edge detec-
tion techniques. The local image gradients are calculated based on
the edge map. Then, the orientation histogram channels are cre-
ated based on the gradient orientation values. We find the domi-
nance of orientation angles is similar across scales. In Fig. 2, the
average orientation distribution across spatial scales is demon-
strated. It is obviously that the resulting estimated environmental
distribution indicates a predominance of vertical and horizontal
orientations.
(b) V-SIFT

s neighbours at the current and adjacent scales. (a) Standard SIFT comparing 26



Fig. 5. Subregions selection around keypoint in V-SIFT.
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In Table 1, we compare the orientation magnitude proportion
values of horizontal and vertical with oblique orientation in eight
categories of the Urban and Natural Scene dataset. The statistical
significance of the difference between the cardinal orientation
angles vs. oblique orientation angles is tested on paired t-test.
According to the result of t-test, the differences for all the categories
are significant.

This experiment reveals that the anisotropic and cardinal
orientation is dominant in real-world orientation distribution.
This conclusion is consistent with the hypothesis that the cardinal
biases in human’s perception are accounted for the prevalence of
vertical and horizontal orientation in the real world.
4. SIFT without least discriminatory visual orientation

The standard SIFT includes three major stages (Lowe, 1999): (1)
keypoint detection and localization; (2) orientation assignment to
keypoint; (3) keypoint descriptor. All these three stages are also
involved in the proposed V-SIFT. The novelty of the proposed
V-SIFT is that, we ignore the information of oblique orientation
in every stage.

4.1. Keypoint detection and localization

The first stage is to identify locations and scales that can be
repeatedly assigned under differing views (Lowe, 2004). One effec-
tive way of identifying locations that are invariant to scale change
is searching for stable features across all possible scales. In V-SIFT,
we also follow this procedure to detect keypoints. The scale space
(a) The optical zoom is ×× 1

Fig. 6. The number of keypoints detection by SIFT and V-SIFT in absolute tilt tests. T
image Lðx; y; sÞ can be produced by using the convolution of a vari-
able-scale Gaussian function Gðx; y; sÞ on the original input image
Iðx; yÞ, just like:

Lðx; y; sÞ ¼ Gðx; y; sÞ�Iðx; yÞ ð1Þ

where s is denoted as the scale value. And the variable-scale
Gaussian function Gðx; y; sÞ is defined as:

Gðx; y; sÞ ¼ 1
2ps

e�ðx
2þy2Þ=2s ð2Þ

Based on the scale space function Lðx; y; sÞ, the difference-of-
Gaussians operator DoGðx; y; sÞ, can be computed from the differ-
ence of two nearby separated scales:

DoGðx; y; sÞ ¼ Lðx; y; sþ DsÞ � Lðx; y; sÞ
¼ ½Gðx; y; sþ DsÞ � Gðx; y; sÞ��Iðx; yÞ

¼ Ds
2
r2Lðx; y; sÞ

ð3Þ

Once the difference-of-Gaussians (DoG) image is obtained, all key-
points can be identified as the local minima/maxima of the DoG
images across scales. To standard SIFT, the identification of the local
minima/maxima is done by comparing each pixel in the DoG images
to its eight neighbors at the same scale and nine corresponding
neighboring pixels in each of the neighboring scales. If the pixel
value is the maximum or minimum among all compared pixels, this
pixel will be selected as a keypoint. Different with the process of the
standard SIFT shown in Fig. 3(a), V-SIFT only compares the neigh-
bors located in cardinal orientation. These neighbors are marked
as green circular in Fig. 3(b).

4.2. Orientation assignment to keypoint

In the second step, each keypoint is assigned one or more domi-
nant orientation angles based on their local image gradient direc-
tions. Because the keypoint descriptor can be represented
relative to the dominant orientation, this step is important in
achieving invariance to rotation.

The gradient magnitude mðx; y; sÞ and the orientation hðx; y; sÞ
are pre-computed using pixel differences in the scale space image
Lðx; y; sÞ at the keypoint’s scale s:

mðx;y;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLðxþ1;y;sÞ�Lðx�1;y;sÞÞ2þðLðx;yþ1;sÞ�Lðx;y�1;sÞÞ2

q
ð4Þ

hðx;y;sÞ¼ tan�1 Lðx;yþ1;sÞ�Lðx;y�1;sÞ
Lðxþ1;y;sÞ�Lðx�1;y;sÞ

� �
ð5Þ

Based on the Eqs. (4) and (5), the magnitude mðx; y; sÞ and the
orientation hðx; y; sÞ for the gradient are calculated for every pixel
around the keypoint. After it, the orientation histogram for every
keypoint is formed. In the standard SIFT, 36 bins are formed the his-
togram, with 10 degrees per bin. In the neighborhood, each sample
(b) The optical zoom is × 10

he values shown above the bar are the number of keypoints for each viewpoint.



Table 2
Proportion of the dominant orientation.

Zoom �1 Zoom �10

h (�) Cardinal (%) Oblique (%) Cardinal (%) Oblique (%)

+45 75.78 24.22 72.97 27.03
�45 76.09 23.91 74.91 25.09
+65 75.37 24.63 76.01 23.99
�65 76.45 23.55 74.46 25.54
+75 73.67 26.33 79.13 20.87
�75 75.25 24.75 81.78 18.22
+80 74.02 25.98 82.31 17.69
�80 76.96 23.04 83.68 16.32

Table 3
Number of correct matches in absolute tilt test.

Zoom �1 Zoom �10

h (�) SIFT V-SIFT SIFT V-SIFT

+45 153 173 95 115
�45 108 120 118 128
+65 56 58 14 12
�65 56 74 4 8
+75 8 17 3 3
�75 10 23 2 3
+80 2 3 3 1
�80 5 3 2 1

Table 4
Number of correct matches in transition tilt test.

t = 2 t = 4

/ (�) SIFT V-SIFT SIFT V-SIFT

10 166 175 15 23
20 25 25 11 15
30 4 4 3 4
40 2 4 1 1
50 1 0 1 1
60 2 2 0 0
70 1 1 0 0
80 0 0 0 0
90 2 2 0 0
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adding to a histogram bin is weighted by its gradient magnitude
and by a Gaussian-weighted circular window. In the proposed
V-SIFT, by omitting the bins in oblique orientation of the histogram,
the novel histogram only has 24 bins with 10 degrees per bin as
Fig. 4.

After the histogram is constructed, the orientation angles
corresponding to the highest peak and the local peaks within the
threshold a of the highest peak are assigned to the keypoint as
the main orientation angle. In the case where multiple orientation
angles are assigned, an additional keypoint with the same location
and scale as the original keypoint is created for the additional
orientation angle. In V-SIFT, we follow the parameter setting of a
in standard SIFT, which is set as 78%.
4.3. Keypoint descriptor

In the third stage, the keypoint is represented as a descriptor,
namely keypoint descriptor. To standard SIFT, the keypoint
descriptor is a vector of orientation histograms. These histograms
are computed from the magnitude and orientation values of the
samples in the 16 � 16 region around every keypoint. Hence, each
histogram contains samples from 4 � 4 subregions of the original
neighborhood region. Since there are 4 � 4 = 16 histograms and
each comes with 8 bins, the orientation histogram vector has 128
elements in total.

In this stage, we will remove the representation information
from four subregions that are located in the oblique orientation
of the keypoints, including the top-left, top-right, down-left and
down-right subregions. These four omitted subregions are the
missing parts of the subregions in Fig. 5. Hence, different from
SIFT, V-SIFT only utilizes 16 subregions as its neighborhood. The
V-SIFT use 3 � 4 = 12 subregions, and 3 � 4 � 8 = 96 elements fea-
ture vector for each keypoint. It is obvious the dimension of V-SIFT
is lower than SIFT.
5. Experiments

This section describes three experiments that are conducted to
investigate the performance of the proposed V-SIFT. In the first
experiment, we will test the invariance of the proposed V-SIFT to
the absolute and transition tilts. In the second experiment, a dis-
tortion dataset will be used to evaluate the methods’ robustness
to five different changes in imaging conditions. The object category
classification accuracy based on the different feature descriptors
are demonstrated and analyzed in the third experiment.
5.1. Invariance to absolute and transition tilts

In the first part of Section 5, the experiments include extensive
tests with the standard dataset (Yu & Morel, 2009), a systematic
evaluation of methods’ invariance to absolute and transition tilts
images of various types. The resolution of the original image and
the transformed image is 600 � 450.

In the absolute tilt tests, the image was photographed with an
optical zoom varying between �1 and �10 and with viewpoint
angles h between the camera axis and the normal to the painting
varying from 0� (frontal view) to 80�.

In the absolute tilt test of this dataset, we first evaluate the
stage of keypoint detection and localization. In this stage, the key-
point is detected in a DoG image by comparing a pixel to its neigh-
borhoods in the cardinal orientation at the current & adjacent
scales. In Fig. 6, we provide the number of keypoints that are
detected by the standard SIFT and the proposed V-SIFT.
Compared with the standard SIFT, in this experiment, V-SIFT
obtains more keypoints. The dimension ratio between V-SIFT and
SIFT is N = 128/96 = 1.33, it meaning that V-SIFT is faster in interest
point matching if the number of keypoints found by V-SIFT is not
higher than N times the number of key points found by SIFT.
Based on the number of keypoints shown in Fig. 6, we can calculate
the number ratio between keypoints detected by V-SIFT and SIFT.
We find the maximum number ratio is 1.23, the minimum ratio
is 1.10, and the average ratio is 1.17. It evidences that V-SIFT is fas-
ter in interest point matching.

Then, aiming at the second stage, we calculate the proportion of
the dominant orientation of each keypoint in every image. In this
stage of V-SIFT, we only consider the cardinal orientation as the
dominant orientation. As listed in Table 2, the oblique orientation
has less possibility to become the dominant orientation, which also
evidences that the lost information of V-SIFT in the second stage is
limited.

In addition, an examination of the performance in feature
matching task of SIFT (Lowe, 2004) and V-SIFT, as shown in
Table 3, suggests that in most of cases, the proposed V-SIFT algo-
rithm has more correct matches than SIFT.

In the transition tilt tests of this dataset, the camera with a fixed
latitude angle h corresponding to absolute tilt t = 2 and 4 circled
around. The absolute tilt measures the tilt between the frontal



(a) SIFT result in absolute tilt tests (8 correct matches) (b) V-SIFT result in absolute tilt tests (17 correct matches)

(c) SIFT result in transition tilt tests (25 correct matches) (d) V-SIFT result in transition tilt tests (25 correct matches)

(e) SIFT result in transition tilt tests with incorrect matches (f) V-SIFT result in transition tilt tests (2 correct matches)

Fig. 7. Experimental results for feature detection and matching on absolute and transition tilts dataset. (a) and (b) are the results in absolute tilt tests when the viewpoint
angle h is equal to +75� and the optical zoom is�1. SIFT has 8 correct matches and V-SIFT obtains 17 correct matches. (c) and (d) are the results in transition tilt tests when the
longitude angle / is 20� and the absolute tilt t is 2. Both algorithms have 25 correct matches. (e) and (f) are the results in transition tilt tests when the longitude angle / is 60�
and the absolute tilt t is 2. Although both algorithms have 2 correct matches, the SIFT algorithm has 1 incorrect match marked with yellow line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) Images with scale change (b) Images with different blur

(c) Images with different JPEG compression (d) Images with illumination change

(e) Images with viewpoint change

Fig. 8. Some sample images used for the robustness to distortion evaluation: (a) scale change, (b) image blur, (c) JPEG compression, (d) illumination change, (e) viewpoint
change.
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view and a slanted view, and the viewpoint angle h = arccos(1/t).
Thus, t = 2 corresponds to h = 60� and t = 4 corresponds to h = 75�.
The longitude angle / varies from 0� to 90�. Compared with the
absolute tilt tests, the transition tilt test is much more difficult.
The performance of the proposed V-SIFT and the standard SIFT is
given in Table 4. Although both of the performance decreases with
the increase of the longitude angle, the number of correct matches
of V-SIFT is slightly better than that of SIFT.



Table 5
Number of correct matches in distortion test.

Category Group 1 Group 2 Category Group 1 Category Group 1

SIFT V-SIFT SIFT V-SIFT SIFT V-SIFT SIFT V-SIFT

Image blur Image 1 367 395 241 247 JPEG compression Image 1 858 980 Illumination Image 1 329 348
Image 2 338 389 201 223 Image 2 692 792 Image 2 295 325
Image 3 266 275 139 157 Image 3 469 543 Image 3 227 244
Image 4 190 198 107 114 Image 4 277 285 Image 4 208 231
Image 5 143 151 60 66 Image 5 137 132 Image 5 178 191

Category Group 1 Group 2 Category Group 1 Group 2

SIFT V-SIFT SIFT V-SIFT SIFT V-SIFT SIFT V-SIFT

Viewpoint Image 1 372 370 138 122 Scale Image 1 64 36 213 180
Image 2 200 205 26 21 Image 2 21 9 74 40
Image 3 49 66 8 7 Image 3 2 1 31 28
Image 4 6 8 0 0 Image 4 3 3 15 15
Image 5 0 1 0 0 Image 5 0 1 2 1
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Fig. 7 provides two examples of feature detection and matching
by the standard SIFT and the proposed V-SIFT. Fig. 7(a) and (b) are
the results in the absolute tilt tests when the viewpoint angle h is
equal to +75� and the optical zoom is �1. In this case, the standard
SIFT has 8 correct matches and the proposed V-SIFT obtains 17 cor-
rect matches. Figs. 7(c) and 6(d) are the results in the transition tilt
tests when the longitude angle / is 20� and the absolute tilt t is 2.
In this condition, both of the algorithms have 25 correct matches.
Fig. 7(e) and (f) are the results in transition tilt tests when the
longitude angle / is 60� and the absolute tilt t is 2. Although both
algorithms have 2 correct matches, the SIFT algorithm has a higher
false-alarm rate.

5.2. Robustness to distortions

In the second part of the experiments, the standard dataset
(Mikolajczyk & Schmid, 2005) is used to evaluate the methods’
robustness to five different changes in imaging conditions: image
blur, JPEG compression, illumination, viewpoint and scale (zoom
and rotation). The blur is acquired by varying the camera focus.
The JPEG sequence is generated using a standard xv image browser
with the image quality parameter varying from 40% to 2%. The light
changes are introduced by varying the camera aperture. In the
viewpoint change test, the camera varies from a front to-parallel
view to one with significant foreshortening at approximately 60�
to the camera. The scale change is acquired by varying the camera
zoom and rotation. Image rotations are obtained by rotating the
camera around its optical axis in the range of 30� and 45�. The
zoom changes by about a factor of four. In this dataset, the images
are either of planar scenes or the camera position was fixed during
acquisition. In three of these different changes, including: image
blur, viewpoint and scale, there exists two image groups in this
dataset. Thus, in the following experiments, we denote these
images as Group 1 and Group 2. To JPEG compression and illumi-
nation changes, it only includes one group. For each group, it con-
tains one original image and five images with a gradual
photometric or geometric transformation. All images are of med-
ium resolution (approximately 800 � 640 pixels). Some sample
images in this dataset are shown in Fig. 8.

Table 5 provides the number of correct matches between the
original image and other five images (from Image 1 to Image 5)
achieved by SIFT and V-SIFT. Although V-SIFT has lower dimen-
sions, it achieved comparable and even better matching perfor-
mance in most of test, such as blur, JPEG compression,
illumination, and viewpoint. But to the scale test, we can easily
find the number of correct matches via SIFT is more than the cor-
rect numbers obtained by using V-SIFT. That is because the images
of scale test in the distortion dataset involve the obvious rotation
change, which will challenge the proposed V-SIFT without infor-
mation from oblique orientation angles.

In Fig. 9, we present two examples of feature detection and
matching by SIFT and V-SIFT on distortion dataset. Fig. 9(a) and
(b) are the results in image blur change test. SIFT has 60 correct
matches and V-SIFT obtains 66 correct matches. Fig. 9(c) and (d)
are the results in view point change test. Similar with the results
in Table 5, the proposed V-SIFT achieved better matching perfor-
mance in viewpoint test. In this case, SIFT has 6 correct matches
and V-SIFT obtains 8 correct matches. But if the rotation is included
in the distortion, such as the scale test in distortion dataset, the
matching ability of V-SIFT is possible to be weakened. Just like
the example of the scale test shown in Figs. 9(e) and 8(f), it is
obviously SIFT has more correct matches than V-SIFT. It is due to
the rotation angle between the original image and the rotated
image is almost oblique. In this case, the information from oblique
orientation will become dominant. Without this information, the
proposed V-SIFT cannot demonstrate its advantages in representa-
tion and matching of keypoints.

We further investigate the performance in scale test. In
Table 6, the number of correct matches/all matches for each test
image (from Image 1 to Image 5) in every stage is given. We can
find the algorithm in the second stage, namely orientation
assignment to keypoint, influences the performance much more
than other steps. As we described before, in this stage, the origi-
nal histogram with 36 bins is substituted as the novel histogram
with only 24 bins by omitting the bins located in oblique orienta-
tion. But if the rotation angle is located in the oblique orienta-
tion, just like the case shown in Fig. 9(e) and (f), the original
main orientation in cardinal orientation will be located in the
oblique bin. In our algorithm, it means these main orientation
angles will be omitted. Hence, if the matching is tested on the
images with rotation, it would be better to utilize the version
of V-SIFT without omitting the oblique bins in orientation assign-
ment stage.

5.3. Object category classification

The object classification is one of the most classical tasks in
computer vision. So far, state-of-the-art approaches include those
relying on robust features have been developed in the past decade.
For example, the SIFT features coupled with a Bag-of-words (BoW)
approach (Li, Fergus, & Torralba, 2009) has been shown effective-
ness in many tasks.

For evaluating the performance of different descriptors in the
context of object classification, we adopt the PASCAL Visual
Object Classes Challenge 2006 in this experiment (Everingham,
Zisserman, Williams, & Gool, 2006). The aim of this challenge is



(d) V-SIFT result in viewpoint change test (8 correct matches) 

(e) SIFT result in scale change test (21 correct matches) 

(f) V-SIFT result in scale change test (9 correct matches) 

(a) SIFT result in image blur change test (60 correct matches) 

(b) V-SIFT result in image blur change test (66 correct matches) 

(c) SIFT result in viewpoint change test (6 correct matches) 

Fig. 9. Experimental results for feature detection and matching on distortion
dataset. (a) and (b) are the results in image blur change test. SIFT has 60 correct
matches and V-SIFT obtains 66 correct matches. (c) and (d) are the results in
viewpoint change test. SIFT has 6 correct matches and V-SIFT obtains 8 correct
matches. (e) and (f) are the results in scale change test. SIFT has 21 correct matches
and V-SIFT obtains 9 correct matches.
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to recognize objects from various visual object classes in real
scenes. In this dataset, it includes ten object classes, namely
‘‘bicycle,’’ ‘‘bus,’’ ‘‘car,’’ ‘‘cat,’’ ‘‘cow,’’ ‘‘dog,’’ ‘‘horse,’’ ‘‘motorbike,’’
‘‘person,’’ and ‘‘sheep.’’ A sample image of each category is shown
in Fig. 10. As an experiment framework, the Bag-of-words (Sivic
& Zisserman, 2003) approach is used to describe the images as sets
of elementary local features based on keypoints’ descriptors.
Furthermore, we also use Support vector machines (SVM)
(Schölkopf & Smola, 2002) to train a classifier for each object class
and classify the test images with the constructed classifier. The RBF
kernel function is selected as the kernel function in SVM. Our
implementation is based on the well-known LIBSVM toolbox
(Chang & Lin, 2011). We use trainval (train + val) images for train-
ing Bag-of-Words models and the classifiers, and test images for
testing the classifiers. Table 7 summarizes the number for training
and test images for each class in the PASCAL visual object classes
challenge 2006 image sets.

The object category classification experiments were done based
on SIFT, V-SIFT, Dense SIFT (Bosch et al., 2006) and Dense V-SIFT
detectors and descriptors. The average prediction accuracies are
given in Table 8. From this table, we can find the average classifi-
cation accuracy of the proposed V-SIFT is better than the standard
SIFT. But if the SIFT descriptors are obtained over dense grids in the
image domain accompanied with a clustering stage, namely Dense
SIFT, the average prediction accuracy is outperformed than Dense
V-SIFT. Fig. 11 demonstrates the confusion matrix of the prediction
classification accuracy based on the Dense SIFT (Fig. 11(a)) and the
Dense V-SIFT (Fig. 11(b)). From these two figures, we can find even
the dense version is applied for the object classification task, the
performance difference between Dense SIFT and Dense V-SIFT is
not large. Hence, it evidences that the oblique orientation owns
least discriminatory information.

In order to understand the performance better, we compare the
proposed V-SIFT with SIFT mathematically. We describe the
images as sets of elementary local features based on SIFT and V-
SIFT descriptors via Bag-of-words (Sivic & Zisserman, 2003)
approach. Then, we map these local BOW features onto the 3-D
subspaces by principal component analysis (PCA). We calculate
the average Euclidean distance of within-category features Sw

and average Euclidean distance of between-category features Sb

by Eq. (6) onto these 3-D subspaces. In Eq. (6), ys and yt denote
the class label of 3-D feature point Xs and Xt; nd is the number of
data points in all classes and nb is the number of feature pairs
belong to different categories. We find out the average within-
category distance based on V-SIFT (0.0212) is slightly smaller than
its value based on SIFT (0.0224), and the ratio of within-category
distance and between-category distance is same. These results tell
us although V-SIFT neglects the information in oblique orientation,
it will not influence the representation ability.
Sw ¼
1
nd

X
ys¼ys

jjXs � Xtjj; Sb ¼
1
nb

X
ys–ys

jjXs � Xtjj ð6Þ
In Table 9, we report the efficiency comparison between SIFT and V-
SIFT. We provide the average storage size of the SIFT and V-SIFT
descriptors. Furthermore, we also record the real running time for
the bag-of-words representation construction and SVM classifica-
tion based on SIFT and V-SIFT. All the codes are implemented in
MATLAB R2014a on the test PC with Intel core I7-3520 2.9 GHz
and 8.00 GB RAM. From these results, it is obvious the proposed
algorithm reduces the running time and decreases the storage
resource requirement.



Table 6
Number of correct/all matches in scale test.

Stage Group 1 Group 2

1 2 3 No. of correct matches/no. of all matches No. of correct matches/no. of all matches

Image 1 Image 2 Image 3 Image 4 Image 5 Image 1 Image 2 Image 3 Image 4 Image 5
p p p

35/36 9/9 1/1 3/3 1/1 180/180 40/40 28/28 15/15 1/2p p
42/42 11/11 1/1 4/4 0/0 200/200 42/42 24/24 15/16 2/3p p
31/32 8/8 0/0 2/2 1/1 160/161 37/38 29/29 15/15 2/3p p
61/62 19/20 3/3 5/5 0/0 215/215 70/70 30/31 13/15 2/3

(1) Keypoint detection and localization, (2) Orientation assignment to keypoint, (3) Keypoint descriptor.

Bicycle                             Bus                                  Car                                    Cat          Person

Cow                               Sheep                          Horse                              Motorbike                   Dog

Fig. 10. Some sample image patterns from 10 object categories in the PASCAL VOC 2006 dataset for object classification evaluation.

Table 7
Statistics of the PASCAL visual object classes challenge 2006 image sets.

Category Bicycle Bus Car Cat Cow Dog Horse Motorbike Person Sheep

Trainval 270 174 553 386 206 365 247 235 666 251
Test 268 180 544 388 197 370 254 234 675 238

Table 8
Average object classification accuracy on the PASCAL visual object classes challenge 2006 image sets.

Algorithm SIFT + BOW + SVM V-SIFT + BOW + SVM Dense SIFT + BOW + SVM Dense V-SIFT + BOW + SVM

Accuracy (%) 46.82 48.81 63.06 60.67

(a) Dense SIFT+BOW+SVM                  (b) Dense V-SIFT+BOW+SVM 

Fig. 11. Classification confusion matrix based on the dense version of SIFT and V-SIFT.
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Table 9
Efficiency comparison on the PASCAL visual object classes challenge 2006 image sets.

Algorithm SIFT V-SIFT

Average storage size (kb) 1274 1155
BOW construction (s) 411 361
SVM training and test (s) 622 496
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6. Conclusions

In this paper, we proposed a novel scale-invariant feature trans-
form algorithm V-SIFT based on the orientation inhomogeneity in
human visual perception. The main contributions of this work
are summarized as follows: (1) the evidence of existence of the
least important visual orientation is shown on a standard dataset;
(2) a novel algorithm is proposed to detect and describe local fea-
ture by omitting the information of the least discriminatory
orientation in three stages of the standard computation; (3) the
proposed algorithm has better accuracy in key point matching task
and comparable performance in an object classification task; (4)
the proposed algorithm demonstrates better efficiency and smaller
storage capacity than standard SIFT.

We have already shown that the proposed algorithm is applic-
able to key point matching task and object classification task in our
experiments. Actually, it has good impacts and practical implica-
tions in a wide range of applications. Since the feature detectors
and descriptors have been proven to be useful in many applica-
tions. The proposed algorithm can be used in many real-world
applications such as the image copy detection, image stitching,
and video tracking. Furthermore, the proposed algorithm needs
smaller storage capacity and better efficiency, which makes it
potentially suitable for industry application where time or space
complexity is more important, such as the image search engines.

Although the proposed algorithm has performed better than
existing methods in key point matching task and comparable per-
formance in an object classification task, there is much room for
improvement. From Fig. 9(e) and (f), and the comparison of the last
category of Table 5, we can observe that the matching accuracy of
the proposed method is relatively low when the rotation angle is
oblique, which makes the original cardinal main orientation drifted
to oblique orientation bins and finally omitted by the proposed
algorithm. Hence, how to improve the adaptability of the operator
by automatically adjusting the weights of the oblique orientation
according to the orientation distribution is the first future work
we need to consider. Another meaningful future work is to improve
the efficiency of the algorithm in order to make sure the current
algorithm can be transplanted on the portable devices. Last but
not least, we would like to integrate the inhomogeneity of visual
orientation into other local orientation histogram based local fea-
ture detectors and descriptors and apply them in other applica-
tions such as image stitching and video tracking.
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